File size: 9,095 Bytes
cc8348d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb3169
 
 
 
457d325
 
 
 
cc8348d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb3169
 
 
e4627b7
bdb3169
 
 
 
e4627b7
bdb3169
457d325
 
 
 
 
 
 
 
 
 
cc8348d
 
 
 
 
 
bdb3169
457d325
cc8348d
 
 
 
e4627b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc8348d
 
 
 
 
 
e4627b7
cc8348d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4627b7
bdb3169
457d325
cc8348d
 
 
 
 
 
 
e4627b7
 
 
 
 
 
457d325
e4627b7
 
 
 
 
 
 
 
457d325
e4627b7
 
cc8348d
 
 
 
457d325
 
 
 
 
 
 
 
cc8348d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
from transformers import (
    DistilBertTokenizerFast,
    DistilBertForSequenceClassification,
    AutoTokenizer,
    AutoModelForSequenceClassification,
)
from huggingface_hub import hf_hub_download
import torch
import pickle
import numpy as np

# Load models and tokenizers
models = {
    "DistilBERT": {
        "tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
        "model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
    },
    "Logistic Regression": {},  # Placeholder for logistic regression
    "BERT Multilingual (NLP Town)": {
        "tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
        "model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
    },
    "TinyBERT": {
        "tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"),
        "model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"),
    },
    "RoBERTa": {
        "tokenizer": AutoTokenizer.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
        "model": AutoModelForSequenceClassification.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
    }
}

# Load logistic regression model and vectorizer
logistic_regression_repo = "nhull/logistic-regression-model"

# Download and load logistic regression model
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
with open(log_reg_model_path, "rb") as model_file:
    log_reg_model = pickle.load(model_file)

# Download and load TF-IDF vectorizer
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
with open(vectorizer_path, "rb") as vectorizer_file:
    vectorizer = pickle.load(vectorizer_file)

# Move HuggingFace models to device (if GPU is available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model_data in models.values():
    if "model" in model_data:
        model_data["model"].to(device)

# Functions for prediction
def predict_with_distilbert(text):
    tokenizer = models["DistilBERT"]["tokenizer"]
    model = models["DistilBERT"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def predict_with_logistic_regression(text):
    transformed_text = vectorizer.transform([text])
    predictions = log_reg_model.predict(transformed_text)
    return int(predictions[0])

def predict_with_bert_multilingual(text):
    tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
    model = models["BERT Multilingual (NLP Town)"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def predict_with_tinybert(text):
    tokenizer = models["TinyBERT"]["tokenizer"]
    model = models["TinyBERT"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

def predict_with_roberta_ordek899(text):
    tokenizer = models["RoBERTa"]["tokenizer"]
    model = models["RoBERTa"]["model"]
    encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**encodings)
        logits = outputs.logits
        predictions = logits.argmax(axis=-1).cpu().numpy()
    return int(predictions[0] + 1)

# Unified function for sentiment analysis and statistics
def analyze_sentiment_and_statistics(text):
    results = {
        "DistilBERT": predict_with_distilbert(text),
        "Logistic Regression": predict_with_logistic_regression(text),
        "BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
        "TinyBERT": predict_with_tinybert(text),
        "RoBERTa": predict_with_roberta_ordek899(text),
    }
    
    # Calculate statistics
    scores = list(results.values())
    if all(score == scores[0] for score in scores):  # Check if all predictions are the same
        statistics = {
            "Message": "All models predict the same score.",
            "Average Score": f"{scores[0]:.2f}",
        }
    else:
        min_score_model = min(results, key=results.get)
        max_score_model = max(results, key=results.get)
        average_score = np.mean(scores)
        
        statistics = {
            "Lowest Score": f"{results[min_score_model]} (Model: {min_score_model})",
            "Highest Score": f"{results[max_score_model]} (Model: {max_score_model})",
            "Average Score": f"{average_score:.2f}",
        }
    return results, statistics

# Gradio Interface
with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding: 20px; }") as demo:
    gr.Markdown("# Sentiment Analysis App")
    gr.Markdown(
        "This app predicts the sentiment of the input text on a scale from 1 to 5 using multiple models and provides basic statistics."
    )
    
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(
                label="Enter your text here:", 
                lines=3, 
                placeholder="Type your hotel/restaurant review here..."
            )
            sample_reviews = [
                "The hotel was fantastic! Clean rooms and excellent service.",
                "The food was horrible, and the staff was rude.",
                "Amazing experience overall. Highly recommend!",
                "It was okay, not great but not terrible either.",
                "Terrible! The room was dirty, and the service was non-existent."
            ]
            sample_dropdown = gr.Dropdown(
                choices=sample_reviews, 
                label="Or select a sample review:", 
                interactive=True
            )
            
            # Sync dropdown with text input
            def update_textbox(selected_sample):
                return selected_sample
            
            sample_dropdown.change(
                update_textbox,
                inputs=[sample_dropdown],
                outputs=[text_input]
            )
        
        with gr.Column():
            analyze_button = gr.Button("Analyze Sentiment")

    with gr.Row():
        with gr.Column():
            distilbert_output = gr.Textbox(label="Predicted Sentiment (DistilBERT)", interactive=False)
            log_reg_output = gr.Textbox(label="Predicted Sentiment (Logistic Regression)", interactive=False)
            bert_output = gr.Textbox(label="Predicted Sentiment (BERT Multilingual)", interactive=False)
            tinybert_output = gr.Textbox(label="Predicted Sentiment (TinyBERT)", interactive=False)
            roberta_ordek_output = gr.Textbox(label="Predicted Sentiment (RoBERTa)", interactive=False)
        
        with gr.Column():
            statistics_output = gr.Textbox(label="Statistics (Lowest, Highest, Average)", interactive=False)

    # Button to analyze sentiment and show statistics
    def process_input_and_analyze(text_input):
        results, statistics = analyze_sentiment_and_statistics(text_input)
        if "Message" in statistics:  # All models predicted the same score
            return (
                f"{results['DistilBERT']}",
                f"{results['Logistic Regression']}",
                f"{results['BERT Multilingual (NLP Town)']}",
                f"{results['TinyBERT']}",
                f"{results['RoBERTa']}",
                f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
            )
        else:  # Min and Max scores are present
            return (
                f"{results['DistilBERT']}",
                f"{results['Logistic Regression']}",
                f"{results['BERT Multilingual (NLP Town)']}",
                f"{results['TinyBERT']}",
                f"{results['RoBERTa']}",
                f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
            )
    
    analyze_button.click(
        process_input_and_analyze,
        inputs=[text_input],
        outputs=[
            distilbert_output, 
            log_reg_output, 
            bert_output, 
            tinybert_output, 
            roberta_ordek_output, 
            statistics_output
        ]
    )

# Launch the app
demo.launch()