Added cost of API calls to output
Browse files- L3Score.py +52 -40
- README.md +6 -6
- requirements.txt +1 -0
L3Score.py
CHANGED
|
@@ -23,11 +23,10 @@ import os
|
|
| 23 |
import evaluate
|
| 24 |
import datasets
|
| 25 |
import numpy as np
|
| 26 |
-
|
| 27 |
import openai
|
| 28 |
|
| 29 |
from langchain.chat_models.base import init_chat_model
|
| 30 |
-
|
| 31 |
|
| 32 |
_CITATION = """\
|
| 33 |
@article{pramanick2024spiqa,
|
|
@@ -55,16 +54,17 @@ Args:
|
|
| 55 |
reference should be a string.
|
| 56 |
Returns:
|
| 57 |
L3Score: mean L3Score for all (question, prediction, reference) triplets.
|
|
|
|
| 58 |
Examples:
|
| 59 |
Example 1: High certainty the prediction is the same as the ground-truth.
|
| 60 |
>>> L3Score = evaluate.load("L3Score")
|
| 61 |
>>> L3Score.compute(questions=["What is the capital of France?"], predictions=["Paris"], references=["Paris"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
|
| 62 |
-
{'L3Score': 0.99...}
|
| 63 |
|
| 64 |
Example 2: High certainty the prediction is not the same as the ground-truth.
|
| 65 |
>>> L3Score = evaluate.load("L3Score")
|
| 66 |
>>> L3Score.compute(questions=["What is the capital of Germany?"], predictions=["Moscow"], references=["Berlin"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
|
| 67 |
-
{'L3Score': 0.00...}
|
| 68 |
"""
|
| 69 |
|
| 70 |
|
|
@@ -104,14 +104,20 @@ class L3Score(evaluate.Metric):
|
|
| 104 |
codebase_urls=[
|
| 105 |
"https://github.com/google/spiqa/blob/main/metrics/llmlogscore/llmlogscore.py"
|
| 106 |
],
|
| 107 |
-
reference_urls=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
)
|
| 109 |
|
| 110 |
def _download_and_prepare(self, dl_manager):
|
| 111 |
"""Optional: download external resources useful to compute the scores"""
|
| 112 |
pass
|
| 113 |
|
| 114 |
-
def _verify_input(
|
|
|
|
|
|
|
| 115 |
"""Verify the input parameters"""
|
| 116 |
|
| 117 |
if provider not in PROVIDER_WITH_TOP_LOGPROBS:
|
|
@@ -120,37 +126,43 @@ class L3Score(evaluate.Metric):
|
|
| 120 |
PROVIDER_WITH_TOP_LOGPROBS
|
| 121 |
)
|
| 122 |
)
|
| 123 |
-
|
| 124 |
# Check whether the model is available
|
| 125 |
-
|
| 126 |
if provider == "openai":
|
| 127 |
client = openai.OpenAI(api_key=api_key)
|
| 128 |
model_names = set([model.id for model in client.models.list()])
|
| 129 |
if model not in model_names:
|
| 130 |
-
raise ValueError(
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
elif provider == "deepseek":
|
| 133 |
-
client = openai.OpenAI(api_key=api_key,base_url="https://api.deepseek.com")
|
| 134 |
model_names = [model.id for model in client.models.list()]
|
| 135 |
if model not in model_names:
|
| 136 |
-
raise ValueError(
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
elif provider == "xai":
|
| 139 |
client = openai.OpenAI(api_key=api_key, base_url="https://api.xai.com")
|
| 140 |
model_names = [model.id for model in client.models.list()]
|
| 141 |
if model not in model_names:
|
| 142 |
-
raise ValueError(
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
assert len(questions) == len(predictions) == len(references), "Questions, predictions and references must have the same length"
|
| 146 |
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
def _get_llm(self, model, api_key):
|
| 149 |
"""Get the LLM"""
|
| 150 |
llm = init_chat_model(model=model, api_key=api_key)
|
| 151 |
llm = llm.bind(logprobs=True, top_logprobs=5)
|
|
|
|
| 152 |
return llm
|
| 153 |
-
|
| 154 |
|
| 155 |
def _compute(
|
| 156 |
self,
|
|
@@ -162,34 +174,40 @@ class L3Score(evaluate.Metric):
|
|
| 162 |
model="gpt-4o-mini",
|
| 163 |
):
|
| 164 |
"""Returns the scores"""
|
| 165 |
-
|
| 166 |
# Check whether llm can be initialized
|
| 167 |
try:
|
| 168 |
-
self._verify_input(
|
|
|
|
|
|
|
| 169 |
except ValueError as e:
|
| 170 |
return {"error": str(e)}
|
| 171 |
except openai.AuthenticationError as e:
|
| 172 |
message = e.body["message"]
|
| 173 |
return {"error": f"Authentication failed: {message}"}
|
| 174 |
except Exception as e:
|
| 175 |
-
return {
|
|
|
|
|
|
|
| 176 |
|
| 177 |
# Initialize the LLM
|
| 178 |
llm = self._get_llm(model, api_key)
|
| 179 |
|
| 180 |
-
|
| 181 |
L3Score = 0
|
| 182 |
count = 0
|
| 183 |
-
|
| 184 |
for question, prediction, reference in zip(questions, predictions, references):
|
| 185 |
try:
|
| 186 |
response = llm.invoke(
|
| 187 |
(
|
| 188 |
"human",
|
| 189 |
-
_PROMPT.format(
|
|
|
|
|
|
|
| 190 |
)
|
| 191 |
)
|
| 192 |
-
|
|
|
|
| 193 |
except openai.AuthenticationError as e:
|
| 194 |
message = e.body["message"]
|
| 195 |
return {"error": f"Authentication failed: {message}"}
|
|
@@ -214,6 +232,7 @@ class L3Score(evaluate.Metric):
|
|
| 214 |
|
| 215 |
return {
|
| 216 |
"L3Score": L3Score,
|
|
|
|
| 217 |
}
|
| 218 |
|
| 219 |
def _calculate_L3Score(self, top_logprobs):
|
|
@@ -283,21 +302,14 @@ class L3Score(evaluate.Metric):
|
|
| 283 |
"""Remove white space and lower case for normalized comparisons."""
|
| 284 |
return text.strip().lower()
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
-
if __name__ == "__main__":
|
| 288 |
-
|
| 289 |
-
questions = ["What is the capital of France?", "What is the capital of Germany?"]
|
| 290 |
-
predictions = ["Paris", "Moscow"]
|
| 291 |
-
references = ["Paris", "Berlin"]
|
| 292 |
|
| 293 |
-
L3Score_test = L3Score()
|
| 294 |
|
| 295 |
-
results = L3Score_test.compute(
|
| 296 |
-
questions=questions,
|
| 297 |
-
predictions=predictions,
|
| 298 |
-
references=references,
|
| 299 |
-
api_key=os.environ["OPENAI_API_KEY"],
|
| 300 |
-
provider="deepseek",
|
| 301 |
-
model="deepseek-coder",
|
| 302 |
-
)
|
| 303 |
-
|
|
|
|
| 23 |
import evaluate
|
| 24 |
import datasets
|
| 25 |
import numpy as np
|
|
|
|
| 26 |
import openai
|
| 27 |
|
| 28 |
from langchain.chat_models.base import init_chat_model
|
| 29 |
+
from litellm import model_cost
|
| 30 |
|
| 31 |
_CITATION = """\
|
| 32 |
@article{pramanick2024spiqa,
|
|
|
|
| 54 |
reference should be a string.
|
| 55 |
Returns:
|
| 56 |
L3Score: mean L3Score for all (question, prediction, reference) triplets.
|
| 57 |
+
Cost: total cost of the LLM calls.
|
| 58 |
Examples:
|
| 59 |
Example 1: High certainty the prediction is the same as the ground-truth.
|
| 60 |
>>> L3Score = evaluate.load("L3Score")
|
| 61 |
>>> L3Score.compute(questions=["What is the capital of France?"], predictions=["Paris"], references=["Paris"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
|
| 62 |
+
{'L3Score': 0.99..., 'Cost': ...}
|
| 63 |
|
| 64 |
Example 2: High certainty the prediction is not the same as the ground-truth.
|
| 65 |
>>> L3Score = evaluate.load("L3Score")
|
| 66 |
>>> L3Score.compute(questions=["What is the capital of Germany?"], predictions=["Moscow"], references=["Berlin"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
|
| 67 |
+
{'L3Score': 0.00..., 'Cost': ...}
|
| 68 |
"""
|
| 69 |
|
| 70 |
|
|
|
|
| 104 |
codebase_urls=[
|
| 105 |
"https://github.com/google/spiqa/blob/main/metrics/llmlogscore/llmlogscore.py"
|
| 106 |
],
|
| 107 |
+
reference_urls=[
|
| 108 |
+
"https://arxiv.org/pdf/2407.09413",
|
| 109 |
+
"https://github.com/google/spiqa",
|
| 110 |
+
"https://huggingface.co/datasets/google/spiqa",
|
| 111 |
+
],
|
| 112 |
)
|
| 113 |
|
| 114 |
def _download_and_prepare(self, dl_manager):
|
| 115 |
"""Optional: download external resources useful to compute the scores"""
|
| 116 |
pass
|
| 117 |
|
| 118 |
+
def _verify_input(
|
| 119 |
+
self, questions, predictions, references, provider, api_key, model
|
| 120 |
+
):
|
| 121 |
"""Verify the input parameters"""
|
| 122 |
|
| 123 |
if provider not in PROVIDER_WITH_TOP_LOGPROBS:
|
|
|
|
| 126 |
PROVIDER_WITH_TOP_LOGPROBS
|
| 127 |
)
|
| 128 |
)
|
| 129 |
+
|
| 130 |
# Check whether the model is available
|
| 131 |
+
|
| 132 |
if provider == "openai":
|
| 133 |
client = openai.OpenAI(api_key=api_key)
|
| 134 |
model_names = set([model.id for model in client.models.list()])
|
| 135 |
if model not in model_names:
|
| 136 |
+
raise ValueError(
|
| 137 |
+
f"Model {model} not found for provider {provider}, available models: {model_names}"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
elif provider == "deepseek":
|
| 141 |
+
client = openai.OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
| 142 |
model_names = [model.id for model in client.models.list()]
|
| 143 |
if model not in model_names:
|
| 144 |
+
raise ValueError(
|
| 145 |
+
f"Model {model} not found for provider {provider}, available models: {model_names}"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
elif provider == "xai":
|
| 149 |
client = openai.OpenAI(api_key=api_key, base_url="https://api.xai.com")
|
| 150 |
model_names = [model.id for model in client.models.list()]
|
| 151 |
if model not in model_names:
|
| 152 |
+
raise ValueError(
|
| 153 |
+
f"Model {model} not found for provider {provider}, available models: {model_names}"
|
| 154 |
+
)
|
|
|
|
| 155 |
|
| 156 |
+
assert (
|
| 157 |
+
len(questions) == len(predictions) == len(references)
|
| 158 |
+
), "Questions, predictions and references must have the same length"
|
| 159 |
|
| 160 |
def _get_llm(self, model, api_key):
|
| 161 |
"""Get the LLM"""
|
| 162 |
llm = init_chat_model(model=model, api_key=api_key)
|
| 163 |
llm = llm.bind(logprobs=True, top_logprobs=5)
|
| 164 |
+
self._model_cost = model_cost[llm.model_name]
|
| 165 |
return llm
|
|
|
|
| 166 |
|
| 167 |
def _compute(
|
| 168 |
self,
|
|
|
|
| 174 |
model="gpt-4o-mini",
|
| 175 |
):
|
| 176 |
"""Returns the scores"""
|
| 177 |
+
|
| 178 |
# Check whether llm can be initialized
|
| 179 |
try:
|
| 180 |
+
self._verify_input(
|
| 181 |
+
questions, predictions, references, provider, api_key, model
|
| 182 |
+
)
|
| 183 |
except ValueError as e:
|
| 184 |
return {"error": str(e)}
|
| 185 |
except openai.AuthenticationError as e:
|
| 186 |
message = e.body["message"]
|
| 187 |
return {"error": f"Authentication failed: {message}"}
|
| 188 |
except Exception as e:
|
| 189 |
+
return {
|
| 190 |
+
"error": f"An error occurred when verifying the provider/model match: {e}"
|
| 191 |
+
}
|
| 192 |
|
| 193 |
# Initialize the LLM
|
| 194 |
llm = self._get_llm(model, api_key)
|
| 195 |
|
|
|
|
| 196 |
L3Score = 0
|
| 197 |
count = 0
|
| 198 |
+
total_cost = 0
|
| 199 |
for question, prediction, reference in zip(questions, predictions, references):
|
| 200 |
try:
|
| 201 |
response = llm.invoke(
|
| 202 |
(
|
| 203 |
"human",
|
| 204 |
+
_PROMPT.format(
|
| 205 |
+
question=question, gt=reference, answer=prediction
|
| 206 |
+
),
|
| 207 |
)
|
| 208 |
)
|
| 209 |
+
cost = self._get_cost(response)
|
| 210 |
+
total_cost += cost
|
| 211 |
except openai.AuthenticationError as e:
|
| 212 |
message = e.body["message"]
|
| 213 |
return {"error": f"Authentication failed: {message}"}
|
|
|
|
| 232 |
|
| 233 |
return {
|
| 234 |
"L3Score": L3Score,
|
| 235 |
+
"Cost": total_cost,
|
| 236 |
}
|
| 237 |
|
| 238 |
def _calculate_L3Score(self, top_logprobs):
|
|
|
|
| 302 |
"""Remove white space and lower case for normalized comparisons."""
|
| 303 |
return text.strip().lower()
|
| 304 |
|
| 305 |
+
def _get_cost(self, response):
|
| 306 |
+
"""Get the cost of the response"""
|
| 307 |
+
return (
|
| 308 |
+
self._model_cost["input_cost_per_token"]
|
| 309 |
+
* response.usage_metadata["input_tokens"]
|
| 310 |
+
+ self._model_cost["output_cost_per_token"]
|
| 311 |
+
* response.usage_metadata["output_tokens"]
|
| 312 |
+
)
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
|
|
|
| 315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -83,7 +83,7 @@ score = l3score.compute(
|
|
| 83 |
)
|
| 84 |
|
| 85 |
print(score)
|
| 86 |
-
# {'L3Score': 0.49
|
| 87 |
```
|
| 88 |
|
| 89 |
---
|
|
@@ -103,13 +103,13 @@ print(score)
|
|
| 103 |
|
| 104 |
### 📄 Output
|
| 105 |
|
| 106 |
-
A dictionary with a
|
| 107 |
|
| 108 |
```python
|
| 109 |
-
{"L3Score": float}
|
| 110 |
```
|
| 111 |
|
| 112 |
-
The value is the **average score** over all (question, prediction, reference) triplets.
|
| 113 |
|
| 114 |
---
|
| 115 |
|
|
@@ -126,7 +126,7 @@ score = l3score.compute(
|
|
| 126 |
provider="openai",
|
| 127 |
model="gpt-4o-mini"
|
| 128 |
)
|
| 129 |
-
# {'L3Score': 0.99
|
| 130 |
|
| 131 |
score = l3score.compute(
|
| 132 |
questions=["What is the capital of Germany?"],
|
|
@@ -136,7 +136,7 @@ score = l3score.compute(
|
|
| 136 |
provider="openai",
|
| 137 |
model="gpt-4o-mini"
|
| 138 |
)
|
| 139 |
-
# {'L3Score': 0.00
|
| 140 |
```
|
| 141 |
|
| 142 |
---
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
print(score)
|
| 86 |
+
# {'L3Score': 0.49..., 'Cost':...}
|
| 87 |
```
|
| 88 |
|
| 89 |
---
|
|
|
|
| 103 |
|
| 104 |
### 📄 Output
|
| 105 |
|
| 106 |
+
A dictionary with a the score and the cost to query the LLM-provider API:
|
| 107 |
|
| 108 |
```python
|
| 109 |
+
{"L3Score": float, "Cost": float}
|
| 110 |
```
|
| 111 |
|
| 112 |
+
The value is the **average score** over all (question, prediction, reference) triplets and the total cost of all API calls.
|
| 113 |
|
| 114 |
---
|
| 115 |
|
|
|
|
| 126 |
provider="openai",
|
| 127 |
model="gpt-4o-mini"
|
| 128 |
)
|
| 129 |
+
# {'L3Score': 0.99...,'Cost':...}
|
| 130 |
|
| 131 |
score = l3score.compute(
|
| 132 |
questions=["What is the capital of Germany?"],
|
|
|
|
| 136 |
provider="openai",
|
| 137 |
model="gpt-4o-mini"
|
| 138 |
)
|
| 139 |
+
# {'L3Score': 0.00...,'Cost':...}
|
| 140 |
```
|
| 141 |
|
| 142 |
---
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
git+https://github.com/huggingface/evaluate@main
|
|
|
|
| 2 |
langchain==0.3.23
|
| 3 |
langchain-deepseek==0.1.3
|
| 4 |
langchain-openai==0.3.12
|
|
|
|
| 1 |
git+https://github.com/huggingface/evaluate@main
|
| 2 |
+
litellm==1.67.0.post1
|
| 3 |
langchain==0.3.23
|
| 4 |
langchain-deepseek==0.1.3
|
| 5 |
langchain-openai==0.3.12
|