Niklas Hoepner
commited on
Commit
·
26a4d51
1
Parent(s):
8f7a170
Update gradio app
Browse files
app.py
CHANGED
@@ -1,6 +1,135 @@
|
|
|
|
1 |
import evaluate
|
2 |
-
from evaluate.utils import launch_gradio_widget
|
3 |
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import evaluate
|
|
|
3 |
|
4 |
+
l3score = evaluate.load("your-username/L3Score")
|
5 |
|
6 |
+
def compute_l3score(api_key, provider, model, questions, predictions, references):
|
7 |
+
try:
|
8 |
+
result = l3score.compute(
|
9 |
+
questions=[q.strip() for q in questions.split("\n") if q.strip()],
|
10 |
+
predictions=[p.strip() for p in predictions.split("\n") if p.strip()],
|
11 |
+
references=[r.strip() for r in references.split("\n") if r.strip()],
|
12 |
+
api_key=api_key,
|
13 |
+
provider=provider,
|
14 |
+
model=model
|
15 |
+
)
|
16 |
+
return result
|
17 |
+
except Exception as e:
|
18 |
+
return {"error": str(e)}
|
19 |
+
|
20 |
+
with gr.Blocks() as demo:
|
21 |
+
gr.Markdown(r"""
|
22 |
+
# 🦢 L3Score Evaluation Demo
|
23 |
+
|
24 |
+
## 📌 Description
|
25 |
+
**L3Score** evaluates how semantically close a model-generated answer is to a reference answer for a given question. It prompts a **language model as a judge** using:
|
26 |
+
|
27 |
+
```text
|
28 |
+
You are given a question, ground-truth answer, and a candidate answer.
|
29 |
+
|
30 |
+
Question: {{question}}
|
31 |
+
Ground-truth answer: {{gt}}
|
32 |
+
Candidate answer: {{answer}}
|
33 |
+
|
34 |
+
Is the semantic meaning of the ground-truth and candidate answers similar?
|
35 |
+
Answer in one word - Yes or No.
|
36 |
+
```
|
37 |
+
|
38 |
+
The model's **log-probabilities** for "Yes" and "No" tokens are used to compute the score.
|
39 |
+
|
40 |
+
---
|
41 |
+
|
42 |
+
## 🧮 Scoring Logic
|
43 |
+
|
44 |
+
Let $l_{\text{yes}}$ and $l_{\text{no}}$ be the log-probabilities of "Yes" and "No", respectively.
|
45 |
+
|
46 |
+
- If neither token is in the top-5:
|
47 |
+
|
48 |
+
$$
|
49 |
+
\text{L3Score} = 0
|
50 |
+
$$
|
51 |
+
|
52 |
+
- If both are present:
|
53 |
+
|
54 |
+
$$
|
55 |
+
\text{L3Score} = \frac{\exp(l_{\text{yes}})}{\exp(l_{\text{yes}}) + \exp(l_{\text{no}})}
|
56 |
+
$$
|
57 |
+
|
58 |
+
- If only one is present, the missing token’s probability is estimated using remaining mass or the least likely top-5 token.
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
## 🚀 How to Use
|
63 |
+
|
64 |
+
```python
|
65 |
+
import evaluate
|
66 |
+
|
67 |
+
l3score = evaluate.load("your-username/L3Score")
|
68 |
+
|
69 |
+
score = l3score.compute(
|
70 |
+
questions=["What is the capital of France?"],
|
71 |
+
predictions=["Paris"],
|
72 |
+
references=["Paris"],
|
73 |
+
api_key="your-openai-api-key",
|
74 |
+
provider="openai",
|
75 |
+
model="gpt-4o-mini"
|
76 |
+
)
|
77 |
+
print(score)
|
78 |
+
# {'L3Score': 0.99...}
|
79 |
+
```
|
80 |
+
|
81 |
+
---
|
82 |
+
|
83 |
+
## 🔠 Inputs
|
84 |
+
| Name | Type | Description |
|
85 |
+
|--------------|--------------|-----------------------------------------------------------------------------|
|
86 |
+
| `questions` | `list[str]` | The list of input questions. |
|
87 |
+
| `predictions`| `list[str]` | Generated answers by the model being evaluated. |
|
88 |
+
| `references` | `list[str]` | Ground-truth or reference answers. |
|
89 |
+
| `api_key` | `str` | API key for the selected LLM provider. |
|
90 |
+
| `provider` | `str` | Must support top-n token log-probabilities. |
|
91 |
+
| `model` | `str` | Name of the evaluation LLM. |
|
92 |
+
|
93 |
+
## 📄 Output
|
94 |
+
```python
|
95 |
+
{"L3Score": float}
|
96 |
+
```
|
97 |
+
The value is the **average score** over all (question, prediction, reference) triplets.
|
98 |
+
|
99 |
+
---
|
100 |
+
|
101 |
+
## ⚠️ Limitations and Bias
|
102 |
+
- Requires models that expose **top-n token log-probabilities** (e.g., OpenAI, DeepSeek, Groq).
|
103 |
+
- Scores are **only comparable when using the same judge model**.
|
104 |
+
|
105 |
+
## 📖 Citation
|
106 |
+
```bibtex
|
107 |
+
@article{pramanick2024spiqa,
|
108 |
+
title={SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers},
|
109 |
+
author={Pramanick, Shraman and Chellappa, Rama and Venugopalan, Subhashini},
|
110 |
+
journal={arXiv preprint arXiv:2407.09413},
|
111 |
+
year={2024}
|
112 |
+
}
|
113 |
+
```
|
114 |
+
""")
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
api_key = gr.Textbox(label="API Key", type="password")
|
118 |
+
provider = gr.Dropdown(label="Provider", choices=["openai", "deepseek", "xai"], value="openai")
|
119 |
+
model = gr.Textbox(label="Model", value="gpt-4o-mini")
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
questions = gr.Textbox(label="Questions (one per line)", lines=4, placeholder="What is the capital of France?")
|
123 |
+
predictions = gr.Textbox(label="Predictions (one per line)", lines=4, placeholder="Paris")
|
124 |
+
references = gr.Textbox(label="References (one per line)", lines=4, placeholder="Paris")
|
125 |
+
|
126 |
+
compute_button = gr.Button("Compute L3Score")
|
127 |
+
output = gr.JSON(label="L3Score Result")
|
128 |
+
|
129 |
+
compute_button.click(
|
130 |
+
fn=compute_l3score,
|
131 |
+
inputs=[api_key, provider, model, questions, predictions, references],
|
132 |
+
outputs=output
|
133 |
+
)
|
134 |
+
|
135 |
+
demo.launch()
|