Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 4 |
from qwen_vl_utils import process_vision_info
|
| 5 |
import torch
|
| 6 |
import base64
|
|
@@ -11,12 +11,17 @@ import re
|
|
| 11 |
|
| 12 |
models = {
|
| 13 |
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"),
|
| 14 |
-
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto")
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
processors = {
|
| 18 |
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"),
|
| 19 |
-
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
|
| 22 |
|
|
@@ -52,7 +57,7 @@ def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scal
|
|
| 52 |
|
| 53 |
|
| 54 |
@spaces.GPU
|
| 55 |
-
def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-
|
| 56 |
model = models[model_id].eval()
|
| 57 |
processor = processors[model_id]
|
| 58 |
|
|
@@ -92,7 +97,7 @@ def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-7B-Ins
|
|
| 92 |
matches = re.findall(pattern, str(output_text))
|
| 93 |
parsed_boxes = [[int(num) for num in match] for match in matches]
|
| 94 |
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
|
| 95 |
-
return output_text
|
| 96 |
|
| 97 |
css = """
|
| 98 |
#output {
|
|
@@ -101,8 +106,6 @@ css = """
|
|
| 101 |
border: 1px solid #ccc;
|
| 102 |
}
|
| 103 |
"""
|
| 104 |
-
default_system_prompt = "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
|
| 105 |
-
|
| 106 |
with gr.Blocks(css=css) as demo:
|
| 107 |
gr.Markdown(
|
| 108 |
"""
|
|
@@ -125,10 +128,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 125 |
|
| 126 |
gr.Examples(
|
| 127 |
examples=[
|
| 128 |
-
["assets/2024_09_10_10_58_23.png", "Solve the question"
|
| 129 |
-
["assets/2024_09_10_10_58_40.png", "Solve the question"
|
| 130 |
-
["assets/2024_09_10_11_07_31.png", "Solve the question"
|
| 131 |
-
["assets/comics.jpeg", "Describe the since"
|
| 132 |
],
|
| 133 |
inputs=[input_img, text_input],
|
| 134 |
outputs=[model_output_text],
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor, CLIPModel, BlipForConditionalGeneration, CLIPProcessor, BlipProcessor
|
| 4 |
from qwen_vl_utils import process_vision_info
|
| 5 |
import torch
|
| 6 |
import base64
|
|
|
|
| 11 |
|
| 12 |
models = {
|
| 13 |
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"),
|
| 14 |
+
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"),
|
| 15 |
+
torch_dtype="auto", device_map="auto"),
|
| 16 |
+
"openai/clip-vit-base-patch32": CLIPModel.from_pretrained("openai/clip-vit-base-patch32"),
|
| 17 |
+
"Salesforce/blip-image-captioning-base": BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 18 |
}
|
| 19 |
|
| 20 |
processors = {
|
| 21 |
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"),
|
| 22 |
+
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct"),
|
| 23 |
+
"openai/clip-vit-base-patch32": CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32"),
|
| 24 |
+
"Salesforce/blip-image-captioning-base": BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 25 |
}
|
| 26 |
|
| 27 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
@spaces.GPU
|
| 60 |
+
def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-2B-Instruct"):
|
| 61 |
model = models[model_id].eval()
|
| 62 |
processor = processors[model_id]
|
| 63 |
|
|
|
|
| 97 |
matches = re.findall(pattern, str(output_text))
|
| 98 |
parsed_boxes = [[int(num) for num in match] for match in matches]
|
| 99 |
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
|
| 100 |
+
return output_text
|
| 101 |
|
| 102 |
css = """
|
| 103 |
#output {
|
|
|
|
| 106 |
border: 1px solid #ccc;
|
| 107 |
}
|
| 108 |
"""
|
|
|
|
|
|
|
| 109 |
with gr.Blocks(css=css) as demo:
|
| 110 |
gr.Markdown(
|
| 111 |
"""
|
|
|
|
| 128 |
|
| 129 |
gr.Examples(
|
| 130 |
examples=[
|
| 131 |
+
["assets/2024_09_10_10_58_23.png", "Solve the question"],
|
| 132 |
+
["assets/2024_09_10_10_58_40.png", "Solve the question"],
|
| 133 |
+
["assets/2024_09_10_11_07_31.png", "Solve the question"],
|
| 134 |
+
["assets/comics.jpeg", "Describe the since"],
|
| 135 |
],
|
| 136 |
inputs=[input_img, text_input],
|
| 137 |
outputs=[model_output_text],
|