Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,149 +1,208 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from langchain.llms import HuggingFacePipeline
|
| 3 |
-
from langchain.memory import ConversationBufferMemory
|
| 4 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 5 |
-
from langchain.prompts.prompt import PromptTemplate
|
| 6 |
-
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
|
| 7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 8 |
-
from langchain.schema import Document
|
| 9 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
| 10 |
-
from langchain.vectorstores import Chroma
|
| 11 |
-
from transformers import TextStreamer
|
| 12 |
-
from langchain.llms import HuggingFacePipeline
|
| 13 |
-
from langchain.prompts import ChatPromptTemplate
|
| 14 |
-
from langchain.llms import HuggingFaceHub
|
| 15 |
import os
|
| 16 |
-
import
|
| 17 |
-
|
| 18 |
-
import
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
import
|
| 22 |
-
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
TOKEN=os.getenv('HF_TOKEN')
|
| 26 |
subprocess.run(["huggingface-cli", "login", "--token", TOKEN, "--add-to-git-credential"])
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
def main():
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from openai import AzureOpenAI
|
| 4 |
+
import PyPDF2
|
| 5 |
+
import openai
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from typing import List, Dict
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
# Load environment variables
|
| 10 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API")
|
| 11 |
TOKEN=os.getenv('HF_TOKEN')
|
| 12 |
subprocess.run(["huggingface-cli", "login", "--token", TOKEN, "--add-to-git-credential"])
|
| 13 |
+
st.sidebar.title("Welcome to MBAL Chatbot")
|
| 14 |
+
class PDFChatbot:
|
| 15 |
+
def __init__(self):
|
| 16 |
+
# Initialize Azure OpenAI client
|
| 17 |
+
# self.azure_client = AzureOpenAI(
|
| 18 |
+
# api_key=os.getenv("AZURE_OPENAI_KEY"),
|
| 19 |
+
# api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-02-01"),
|
| 20 |
+
# azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
|
| 21 |
+
# )
|
| 22 |
+
self.azure_client = openai.OpenAI()
|
| 23 |
+
# Model name for your deployment
|
| 24 |
+
# self.model_name = os.getenv("AZURE_OPENAI_MODEL", "gpt-4")
|
| 25 |
+
self.model_name = ChatOpenAI(model="gpt-3.5-turbo-0125",openai_api_key = OPENAI_API_KEY)
|
| 26 |
+
|
| 27 |
+
# Store conversation history
|
| 28 |
+
self.conversation_history = []
|
| 29 |
+
self.pdf_content = ""
|
| 30 |
+
def extract_text_from_pdf(self, pdf_file):
|
| 31 |
+
"""Extract text content from uploaded PDF file."""
|
| 32 |
+
try:
|
| 33 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 34 |
+
text = ""
|
| 35 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 36 |
+
page = pdf_reader.pages[page_num]
|
| 37 |
+
text += page.extract_text() + "\n"
|
| 38 |
+
return text.strip()
|
| 39 |
+
except Exception as e:
|
| 40 |
+
st.error(f"Error reading PDF: {str(e)}")
|
| 41 |
+
return None
|
| 42 |
+
def chunk_text(self, text: str, chunk_size: int = 3000) -> List[str]:
|
| 43 |
+
"""Split text into smaller chunks for better processing."""
|
| 44 |
+
words = text.split()
|
| 45 |
+
chunks = []
|
| 46 |
+
current_chunk = []
|
| 47 |
+
current_length = 0
|
| 48 |
+
for word in words:
|
| 49 |
+
if current_length + len(word) + 1 > chunk_size:
|
| 50 |
+
if current_chunk:
|
| 51 |
+
chunks.append(" ".join(current_chunk))
|
| 52 |
+
current_chunk = [word]
|
| 53 |
+
current_length = len(word)
|
| 54 |
+
else:
|
| 55 |
+
current_chunk.append(word)
|
| 56 |
+
current_length += len(word) + 1
|
| 57 |
+
if current_chunk:
|
| 58 |
+
chunks.append(" ".join(current_chunk))
|
| 59 |
+
return chunks
|
| 60 |
+
def get_relevant_context(self, query: str, chunks: List[str], max_chunks: int = 3) -> str:
|
| 61 |
+
"""Get the most relevant chunks for the query (simple keyword matching)."""
|
| 62 |
+
# Simple keyword-based relevance scoring
|
| 63 |
+
query_words = set(query.lower().split())
|
| 64 |
+
chunk_scores = []
|
| 65 |
+
for i, chunk in enumerate(chunks):
|
| 66 |
+
chunk_words = set(chunk.lower().split())
|
| 67 |
+
# Calculate simple overlap score
|
| 68 |
+
overlap = len(query_words.intersection(chunk_words))
|
| 69 |
+
chunk_scores.append((i, overlap, chunk))
|
| 70 |
+
# Sort by relevance score and take top chunks
|
| 71 |
+
chunk_scores.sort(key=lambda x: x[1], reverse=True)
|
| 72 |
+
relevant_chunks = [chunk for _, _, chunk in chunk_scores[:max_chunks]]
|
| 73 |
+
return "\n\n".join(relevant_chunks)
|
| 74 |
+
def chat_with_pdf(self, user_question: str, pdf_content: str) -> str:
|
| 75 |
+
"""Generate response using Azure OpenAI based on PDF content and user question."""
|
| 76 |
+
try:
|
| 77 |
+
# Split PDF content into chunks
|
| 78 |
+
chunks = self.chunk_text(pdf_content)
|
| 79 |
+
# Get relevant context for the question
|
| 80 |
+
relevant_context = self.get_relevant_context(user_question, chunks)
|
| 81 |
+
# Prepare messages for the chat
|
| 82 |
+
messages = [
|
| 83 |
+
{
|
| 84 |
+
"role": "system",
|
| 85 |
+
"content": """You are an experienced insurance agent assistant who helps customers understand their insurance policies and coverage details. Follow these guidelines:
|
| 86 |
+
1. Only provide information based on the PDF content provided
|
| 87 |
+
2. If the answer is not in the PDF, clearly state that the information is not available in the document
|
| 88 |
+
3. Provide clear, concise, and helpful responses in a professional manner
|
| 89 |
+
4. Always respond in English using proper grammar and formatting
|
| 90 |
+
5. When possible, reference specific sections or clauses from the policy
|
| 91 |
+
6. Use insurance terminology appropriately but explain complex terms when necessary
|
| 92 |
+
7. Be empathetic and patient, as insurance can be confusing for customers
|
| 93 |
+
8. If asked about claims, coverage limits, deductibles, or policy terms, provide accurate information from the document
|
| 94 |
+
9. Always prioritize customer understanding and satisfaction
|
| 95 |
+
10. If multiple interpretations are possible, explain the different scenarios clearly
|
| 96 |
+
Remember: You are here to help customers understand their insurance coverage better."""
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"role": "user",
|
| 100 |
+
"content": f"""Insurance Document Content:
|
| 101 |
+
{relevant_context}
|
| 102 |
+
Customer Question: {user_question}
|
| 103 |
+
Please provide a helpful response based on the insurance document content above."""
|
| 104 |
+
}
|
| 105 |
+
]
|
| 106 |
+
# Add conversation history
|
| 107 |
+
for msg in self.conversation_history[-6:]: # Keep last 6 messages for context
|
| 108 |
+
messages.append(msg)
|
| 109 |
+
# Get response from Azure OpenAI
|
| 110 |
+
response = self.azure_client.chat.completions.create(
|
| 111 |
+
model=self.model_name,
|
| 112 |
+
messages=messages,
|
| 113 |
+
max_tokens=1000,
|
| 114 |
+
temperature=0.7
|
| 115 |
+
)
|
| 116 |
+
bot_response = response.choices[0].message.content
|
| 117 |
+
# Update conversation history
|
| 118 |
+
self.conversation_history.append({"role": "user", "content": user_question})
|
| 119 |
+
self.conversation_history.append({"role": "assistant", "content": bot_response})
|
| 120 |
+
return bot_response
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"Error generating response: {str(e)}"
|
| 123 |
def main():
|
| 124 |
+
st.set_page_config(page_title="Insurance PDF Chatbot", page_icon="🛡️", layout="wide")
|
| 125 |
+
st.title("🛡️ Insurance Policy Assistant")
|
| 126 |
+
st.markdown("Upload your insurance policy PDF and ask questions about your coverage, claims, deductibles, and more!")
|
| 127 |
+
# Initialize chatbot
|
| 128 |
+
if 'chatbot' not in st.session_state:
|
| 129 |
+
st.session_state.chatbot = PDFChatbot()
|
| 130 |
+
st.session_state.pdf_processed = False
|
| 131 |
+
st.session_state.chat_history = []
|
| 132 |
+
# Sidebar for PDF upload and settings
|
| 133 |
+
with st.sidebar:
|
| 134 |
+
st.header("📁 Upload Insurance Document")
|
| 135 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
| 136 |
+
if uploaded_file is not None:
|
| 137 |
+
if st.button("Process PDF"):
|
| 138 |
+
with st.spinner("Processing your insurance document..."):
|
| 139 |
+
# Extract text from PDF
|
| 140 |
+
text_content = st.session_state.chatbot.extract_text_from_pdf(uploaded_file)
|
| 141 |
+
if text_content:
|
| 142 |
+
st.session_state.chatbot.pdf_content = text_content
|
| 143 |
+
st.session_state.pdf_processed = True
|
| 144 |
+
st.success("Insurance document processed successfully!")
|
| 145 |
+
# Show PDF summary
|
| 146 |
+
st.subheader("Document Preview")
|
| 147 |
+
st.text_area(
|
| 148 |
+
"First 500 characters:",
|
| 149 |
+
text_content[:500] + "..." if len(text_content) > 500 else text_content,
|
| 150 |
+
height=100
|
| 151 |
+
)
|
| 152 |
+
else:
|
| 153 |
+
st.error("Failed to process PDF")
|
| 154 |
+
# Clear conversation
|
| 155 |
+
if st.button("Clear Conversation"):
|
| 156 |
+
st.session_state.chatbot.conversation_history = []
|
| 157 |
+
st.session_state.chat_history = []
|
| 158 |
+
st.rerun()
|
| 159 |
+
# Main chat interface
|
| 160 |
+
if st.session_state.pdf_processed:
|
| 161 |
+
st.header("💬 Ask About Your Insurance Policy")
|
| 162 |
+
# Display chat history
|
| 163 |
+
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
| 164 |
+
with st.container():
|
| 165 |
+
st.markdown(f"**You:** {question}")
|
| 166 |
+
st.markdown(f"**Insurance Assistant:** {answer}")
|
| 167 |
+
st.divider()
|
| 168 |
+
# Chat input
|
| 169 |
+
user_question = st.chat_input("Ask about your insurance coverage, claims, deductibles, or any policy details...")
|
| 170 |
+
if user_question:
|
| 171 |
+
with st.spinner("Analyzing your policy..."):
|
| 172 |
+
# Get response from chatbot
|
| 173 |
+
response = st.session_state.chatbot.chat_with_pdf(
|
| 174 |
+
user_question,
|
| 175 |
+
st.session_state.chatbot.pdf_content
|
| 176 |
+
)
|
| 177 |
+
# Add to chat history
|
| 178 |
+
st.session_state.chat_history.append((user_question, response))
|
| 179 |
+
# Display the new response
|
| 180 |
+
st.markdown(f"**You:** {user_question}")
|
| 181 |
+
st.markdown(f"**Insurance Assistant:** {response}")
|
| 182 |
+
else:
|
| 183 |
+
st.info("👆 Please upload and process an insurance PDF document to start chatting!")
|
| 184 |
+
# Show example questions
|
| 185 |
+
st.subheader("Example questions you can ask:")
|
| 186 |
+
st.markdown("""
|
| 187 |
+
- What is my coverage limit for property damage?
|
| 188 |
+
- What is my deductible amount?
|
| 189 |
+
- What types of incidents are covered under this policy?
|
| 190 |
+
- What is excluded from my coverage?
|
| 191 |
+
- How do I file a claim?
|
| 192 |
+
- What is the process for claim settlement?
|
| 193 |
+
- What are my premium payment options?
|
| 194 |
+
- When does my policy expire?
|
| 195 |
+
- Is flood damage covered?
|
| 196 |
+
- What documentation do I need for a claim?
|
| 197 |
+
""")
|
| 198 |
+
# Add insurance tips
|
| 199 |
+
st.subheader("💡 Insurance Tips")
|
| 200 |
+
st.markdown("""
|
| 201 |
+
- Review your policy regularly to understand your coverage
|
| 202 |
+
- Keep your policy documents in a safe place
|
| 203 |
+
- Update your coverage when your circumstances change
|
| 204 |
+
- Document any incidents immediately
|
| 205 |
+
- Contact your insurance agent if you have questions
|
| 206 |
+
""")
|
| 207 |
+
if __name__ == "__main__":
|
| 208 |
+
main()
|