Spaces:
Build error
Build error
| # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py | |
| from collections import OrderedDict | |
| from dataclasses import dataclass | |
| from os import PathLike | |
| from pathlib import Path | |
| from typing import Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.attention_processor import AttentionProcessor | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging | |
| from safetensors.torch import load_file | |
| from .resnet import InflatedConv3d, InflatedGroupNorm | |
| from .unet_3d_blocks import UNetMidBlock3DCrossAttn, get_down_block, get_up_block | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class UNet3DConditionOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| class UNet3DConditionModel(ModelMixin, ConfigMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| center_input_sample: bool = False, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ), | |
| mid_block_type: str = "UNetMidBlock3DCrossAttn", | |
| up_block_types: Tuple[str] = ( | |
| "UpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: int = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| class_embed_type: Optional[str] = None, | |
| num_class_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| use_inflated_groupnorm=False, | |
| # Additional | |
| use_motion_module=False, | |
| motion_module_resolutions=(1, 2, 4, 8), | |
| motion_module_mid_block=False, | |
| motion_module_decoder_only=False, | |
| motion_module_type=None, | |
| motion_module_kwargs={}, | |
| unet_use_cross_frame_attention=None, | |
| unet_use_temporal_attention=None, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # input | |
| self.conv_in = InflatedConv3d( | |
| in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1) | |
| ) | |
| # time | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| # class embedding | |
| if class_embed_type is None and num_class_embeds is not None: | |
| self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
| elif class_embed_type == "timestep": | |
| self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| elif class_embed_type == "identity": | |
| self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
| else: | |
| self.class_embedding = None | |
| self.down_blocks = nn.ModuleList([]) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| res = 2 ** i | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module | |
| and (res in motion_module_resolutions) | |
| and (not motion_module_decoder_only), | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| if mid_block_type == "UNetMidBlock3DCrossAttn": | |
| self.mid_block = UNetMidBlock3DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module and motion_module_mid_block, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| else: | |
| raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
| # count how many layers upsample the videos | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| res = 2 ** (3 - i) | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[ | |
| min(i + 1, len(block_out_channels) - 1) | |
| ] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=layers_per_block + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| use_inflated_groupnorm=use_inflated_groupnorm, | |
| use_motion_module=use_motion_module | |
| and (res in motion_module_resolutions), | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| if use_inflated_groupnorm: | |
| self.conv_norm_out = InflatedGroupNorm( | |
| num_channels=block_out_channels[0], | |
| num_groups=norm_num_groups, | |
| eps=norm_eps, | |
| ) | |
| else: | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[0], | |
| num_groups=norm_num_groups, | |
| eps=norm_eps, | |
| ) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = InflatedConv3d( | |
| block_out_channels[0], out_channels, kernel_size=3, padding=1 | |
| ) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, | |
| module: torch.nn.Module, | |
| processors: Dict[str, AttentionProcessor], | |
| ): | |
| # if hasattr(module, "set_processor"): | |
| # processors[f"{name}.processor"] = module.processor | |
| if hasattr(module, "get_processor") or hasattr(module, "set_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| if "temporal_transformer" not in sub_name: | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| if "temporal_transformer" not in name: | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
| in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
| `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_slicable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_slicable_dims(module) | |
| num_slicable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_slicable_layers * [1] | |
| slice_size = ( | |
| num_slicable_layers * [slice_size] | |
| if not isinstance(slice_size, list) | |
| else slice_size | |
| ) | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice( | |
| module: torch.nn.Module, slice_size: List[int] | |
| ): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor( | |
| self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] | |
| ): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| if "temporal_transformer" not in sub_name: | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| if "temporal_transformer" not in name: | |
| fn_recursive_attn_processor(name, module, processor) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| kps_features: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[UNet3DConditionOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
| returning a tuple, the first element is the sample tensor. | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2 ** self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb) | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError( | |
| "class_labels should be provided when num_class_embeds > 0" | |
| ) | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
| emb = emb + class_emb | |
| # pre-process | |
| sample = self.conv_in(sample) | |
| if kps_features is not None: | |
| sample = sample + kps_features | |
| # down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if ( | |
| hasattr(downsample_block, "has_cross_attention") | |
| and downsample_block.has_cross_attention | |
| ): | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| down_block_res_samples += res_samples | |
| if down_block_additional_residuals is not None: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample = ( | |
| down_block_res_sample + down_block_additional_residual | |
| ) | |
| new_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # mid | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| ) | |
| if mid_block_additional_residual is not None: | |
| sample = sample + mid_block_additional_residual | |
| # up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets):] | |
| down_block_res_samples = down_block_res_samples[ | |
| : -len(upsample_block.resnets) | |
| ] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if ( | |
| hasattr(upsample_block, "has_cross_attention") | |
| and upsample_block.has_cross_attention | |
| ): | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| upsample_size=upsample_size, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| # post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return UNet3DConditionOutput(sample=sample) | |
| def from_pretrained_2d( | |
| cls, | |
| pretrained_model_path: PathLike, | |
| motion_module_path: PathLike, | |
| subfolder=None, | |
| unet_additional_kwargs=None, | |
| mm_zero_proj_out=False, | |
| ): | |
| pretrained_model_path = Path(pretrained_model_path) | |
| motion_module_path = Path(motion_module_path) | |
| if subfolder is not None: | |
| pretrained_model_path = pretrained_model_path.joinpath(subfolder) | |
| logger.info( | |
| f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..." | |
| ) | |
| config_file = pretrained_model_path / "config.json" | |
| if not (config_file.exists() and config_file.is_file()): | |
| raise RuntimeError(f"{config_file} does not exist or is not a file") | |
| unet_config = cls.load_config(config_file) | |
| unet_config["_class_name"] = cls.__name__ | |
| unet_config["down_block_types"] = [ | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ] | |
| unet_config["up_block_types"] = [ | |
| "UpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| ] | |
| unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn" | |
| model = cls.from_config(unet_config, **unet_additional_kwargs) | |
| # load the vanilla weights | |
| if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists(): | |
| logger.debug( | |
| f"loading safeTensors weights from {pretrained_model_path} ..." | |
| ) | |
| state_dict = load_file( | |
| pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu" | |
| ) | |
| elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists(): | |
| logger.debug(f"loading weights from {pretrained_model_path} ...") | |
| state_dict = torch.load( | |
| pretrained_model_path.joinpath(WEIGHTS_NAME), | |
| map_location="cpu", | |
| weights_only=True, | |
| ) | |
| else: | |
| raise FileNotFoundError(f"no weights file found in {pretrained_model_path}") | |
| # load the motion module weights | |
| if motion_module_path.exists() and motion_module_path.is_file(): | |
| if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]: | |
| logger.info(f"Load motion module params from {motion_module_path}") | |
| motion_state_dict = torch.load( | |
| motion_module_path, map_location="cpu", weights_only=True | |
| ) | |
| elif motion_module_path.suffix.lower() == ".safetensors": | |
| motion_state_dict = load_file(motion_module_path, device="cpu") | |
| else: | |
| raise RuntimeError( | |
| f"unknown file format for motion module weights: {motion_module_path.suffix}" | |
| ) | |
| if mm_zero_proj_out: | |
| logger.info(f"Zero initialize proj_out layers in motion module...") | |
| new_motion_state_dict = OrderedDict() | |
| for k in motion_state_dict: | |
| if "proj_out" in k: | |
| continue | |
| new_motion_state_dict[k] = motion_state_dict[k] | |
| motion_state_dict = new_motion_state_dict | |
| # merge the state dicts | |
| state_dict.update(motion_state_dict) | |
| # load the weights into the model | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| logger.debug(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| params = [ | |
| p.numel() if "temporal" in n else 0 for n, p in model.named_parameters() | |
| ] | |
| logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module") | |
| return model | |
| def from_config_2d( | |
| cls, | |
| unet_config_path: PathLike, | |
| unet_additional_kwargs=None, | |
| ): | |
| config_file = unet_config_path | |
| unet_config = cls.load_config(config_file) | |
| unet_config["_class_name"] = cls.__name__ | |
| unet_config["down_block_types"] = [ | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ] | |
| unet_config["up_block_types"] = [ | |
| "UpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| ] | |
| unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn" | |
| model = cls.from_config(unet_config, **unet_additional_kwargs) | |
| return model | |