Spaces:
Build error
Build error
| # Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py | |
| import inspect | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import BaseOutput, is_accelerate_available | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from tqdm import tqdm | |
| from transformers import CLIPImageProcessor | |
| from modules import ReferenceAttentionControl | |
| from .context import get_context_scheduler | |
| from .utils import get_tensor_interpolation_method | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class PipelineOutput(BaseOutput): | |
| video_latents: Union[torch.Tensor, np.ndarray] | |
| class VExpressPipeline(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae, | |
| reference_net, | |
| denoising_unet, | |
| v_kps_guider, | |
| audio_processor, | |
| audio_encoder, | |
| audio_projection, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| image_proj_model=None, | |
| tokenizer=None, | |
| text_encoder=None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| reference_net=reference_net, | |
| denoising_unet=denoising_unet, | |
| v_kps_guider=v_kps_guider, | |
| audio_processor=audio_processor, | |
| audio_encoder=audio_encoder, | |
| audio_projection=audio_projection, | |
| scheduler=scheduler, | |
| image_proj_model=image_proj_model, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| self.reference_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True | |
| ) | |
| self.condition_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, | |
| do_convert_rgb=True, | |
| do_normalize=False, | |
| ) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def decode_latents(self, latents): | |
| video_length = latents.shape[2] | |
| latents = 1 / 0.18215 * latents | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| # video = self.vae.decode(latents).sample | |
| video = [] | |
| for frame_idx in tqdm(range(latents.shape[0])): | |
| image = self.vae.decode(latents[frame_idx: frame_idx + 1].to(self.vae.device)).sample | |
| video.append(image) | |
| video = torch.cat(video) | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video = (video / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| video = video.cpu().float().numpy() | |
| return video | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| width, | |
| height, | |
| video_length, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| video_length, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor( | |
| shape, generator=generator, device=device, dtype=dtype | |
| ) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_videos_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| ): | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| text_embeddings = text_embeddings.view( | |
| bs_embed * num_videos_per_prompt, seq_len, -1 | |
| ) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| uncond_embeddings = uncond_embeddings.view( | |
| batch_size * num_videos_per_prompt, seq_len, -1 | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def interpolate_latents( | |
| self, latents: torch.Tensor, interpolation_factor: int, device | |
| ): | |
| if interpolation_factor < 2: | |
| return latents | |
| new_latents = torch.zeros( | |
| ( | |
| latents.shape[0], | |
| latents.shape[1], | |
| ((latents.shape[2] - 1) * interpolation_factor) + 1, | |
| latents.shape[3], | |
| latents.shape[4], | |
| ), | |
| device=latents.device, | |
| dtype=latents.dtype, | |
| ) | |
| org_video_length = latents.shape[2] | |
| rate = [i / interpolation_factor for i in range(interpolation_factor)][1:] | |
| new_index = 0 | |
| v0 = None | |
| v1 = None | |
| for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]): | |
| v0 = latents[:, :, i0, :, :] | |
| v1 = latents[:, :, i1, :, :] | |
| new_latents[:, :, new_index, :, :] = v0 | |
| new_index += 1 | |
| for f in rate: | |
| v = get_tensor_interpolation_method()( | |
| v0.to(device=device), v1.to(device=device), f | |
| ) | |
| new_latents[:, :, new_index, :, :] = v.to(latents.device) | |
| new_index += 1 | |
| new_latents[:, :, new_index, :, :] = v1 | |
| new_index += 1 | |
| return new_latents | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_reference_latent(self, reference_image, height, width): | |
| reference_image_tensor = self.reference_image_processor.preprocess(reference_image, height=height, width=width) | |
| reference_image_tensor = reference_image_tensor.to(dtype=self.dtype, device=self.device) | |
| reference_image_latents = self.vae.encode(reference_image_tensor).latent_dist.mean | |
| reference_image_latents = reference_image_latents * 0.18215 | |
| return reference_image_latents | |
| def prepare_kps_feature(self, kps_images, height, width, do_classifier_free_guidance): | |
| kps_image_tensors = [] | |
| for idx, kps_image in enumerate(kps_images): | |
| kps_image_tensor = self.condition_image_processor.preprocess(kps_image, height=height, width=width) | |
| kps_image_tensor = kps_image_tensor.unsqueeze(2) # [bs, c, 1, h, w] | |
| kps_image_tensors.append(kps_image_tensor) | |
| kps_images_tensor = torch.cat(kps_image_tensors, dim=2) # [bs, c, t, h, w] | |
| kps_images_tensor = kps_images_tensor.to(device=self.device, dtype=self.dtype) | |
| kps_feature = self.v_kps_guider(kps_images_tensor) | |
| if do_classifier_free_guidance: | |
| uc_kps_feature = torch.zeros_like(kps_feature) | |
| kps_feature = torch.cat([uc_kps_feature, kps_feature], dim=0) | |
| return kps_feature | |
| def prepare_audio_embeddings(self, audio_waveform, video_length, num_pad_audio_frames, do_classifier_free_guidance): | |
| audio_waveform = self.audio_processor(audio_waveform, return_tensors="pt", sampling_rate=16000)['input_values'] | |
| audio_waveform = audio_waveform.to(self.device, self.dtype) | |
| audio_embeddings = self.audio_encoder(audio_waveform).last_hidden_state # [1, num_embeds, d] | |
| audio_embeddings = torch.nn.functional.interpolate( | |
| audio_embeddings.permute(0, 2, 1), | |
| size=2 * video_length, | |
| mode='linear', | |
| )[0, :, :].permute(1, 0) # [2*vid_len, dim] | |
| audio_embeddings = torch.cat([ | |
| torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :], | |
| audio_embeddings, | |
| torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :], | |
| ], dim=0) # [2*num_pad+2*vid_len+2*num_pad, dim] | |
| frame_audio_embeddings = [] | |
| for frame_idx in range(video_length): | |
| start_sample = frame_idx | |
| end_sample = frame_idx + 2 * num_pad_audio_frames | |
| frame_audio_embedding = audio_embeddings[2 * start_sample:2 * (end_sample + 1), :] # [2*num_pad+1, dim] | |
| frame_audio_embeddings.append(frame_audio_embedding) | |
| audio_embeddings = torch.stack(frame_audio_embeddings, dim=0) # [vid_len, 2*num_pad+1, dim] | |
| audio_embeddings = self.audio_projection(audio_embeddings).unsqueeze(0) | |
| if do_classifier_free_guidance: | |
| uc_audio_embeddings = torch.zeros_like(audio_embeddings) | |
| audio_embeddings = torch.cat([uc_audio_embeddings, audio_embeddings], dim=0) | |
| return audio_embeddings | |
| def __call__( | |
| self, | |
| vae_latents, | |
| reference_image, | |
| kps_images, | |
| audio_waveform, | |
| width, | |
| height, | |
| video_length, | |
| num_inference_steps, | |
| guidance_scale, | |
| strength=1., | |
| num_images_per_prompt=1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "tensor", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| context_schedule="uniform", | |
| context_frames=24, | |
| context_stride=1, | |
| context_overlap=4, | |
| context_batch_size=1, | |
| interpolation_factor=1, | |
| reference_attention_weight=1., | |
| audio_attention_weight=1., | |
| num_pad_audio_frames=2, | |
| **kwargs, | |
| ): | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| batch_size = 1 | |
| # Prepare timesteps | |
| timesteps = None | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| reference_control_writer = ReferenceAttentionControl( | |
| self.reference_net, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| mode="write", | |
| batch_size=batch_size, | |
| fusion_blocks="full", | |
| ) | |
| reference_control_reader = ReferenceAttentionControl( | |
| self.denoising_unet, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| mode="read", | |
| batch_size=batch_size, | |
| fusion_blocks="full", | |
| reference_attention_weight=reference_attention_weight, | |
| audio_attention_weight=audio_attention_weight, | |
| ) | |
| num_channels_latents = self.denoising_unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| width, | |
| height, | |
| video_length, | |
| self.dtype, | |
| device, | |
| generator | |
| ) | |
| latents = self.scheduler.add_noise(vae_latents, latents, latent_timestep) | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| reference_image_latents = self.prepare_reference_latent(reference_image, height, width) | |
| kps_feature = self.prepare_kps_feature(kps_images, height, width, do_classifier_free_guidance) | |
| audio_embeddings = self.prepare_audio_embeddings( | |
| audio_waveform, | |
| video_length, | |
| num_pad_audio_frames, | |
| do_classifier_free_guidance, | |
| ) | |
| context_scheduler = get_context_scheduler(context_schedule) | |
| # denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| noise_pred = torch.zeros( | |
| ( | |
| latents.shape[0] * (2 if do_classifier_free_guidance else 1), | |
| *latents.shape[1:], | |
| ), | |
| device=latents.device, | |
| dtype=latents.dtype, | |
| ) | |
| counter = torch.zeros( | |
| (1, 1, latents.shape[2], 1, 1), | |
| device=latents.device, | |
| dtype=latents.dtype, | |
| ) | |
| # 1. Forward reference image | |
| if i == 0: | |
| encoder_hidden_states = torch.zeros((1, 1, 768), dtype=self.dtype, device=self.device) | |
| self.reference_net( | |
| reference_image_latents, | |
| torch.zeros_like(t), | |
| encoder_hidden_states=encoder_hidden_states, | |
| return_dict=False, | |
| ) | |
| context_queue = list( | |
| context_scheduler( | |
| 0, | |
| num_inference_steps, | |
| latents.shape[2], | |
| context_frames, | |
| context_stride, | |
| context_overlap, | |
| ) | |
| ) | |
| num_context_batches = math.ceil(len(context_queue) / context_batch_size) | |
| global_context = [] | |
| for i in range(num_context_batches): | |
| global_context.append(context_queue[i * context_batch_size: (i + 1) * context_batch_size]) | |
| for context in global_context: | |
| # 3.1 expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents[:, :, c] for c in context]) | |
| .to(device) | |
| .repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1) | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| latent_kps_feature = torch.cat([kps_feature[:, :, c] for c in context]) | |
| latent_audio_embeddings = torch.cat([audio_embeddings[:, c, ...] for c in context], dim=0) | |
| _, _, num_tokens, dim = latent_audio_embeddings.shape | |
| latent_audio_embeddings = latent_audio_embeddings.reshape(-1, num_tokens, dim) | |
| reference_control_reader.update(reference_control_writer, do_classifier_free_guidance) | |
| pred = self.denoising_unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=latent_audio_embeddings.reshape(-1, num_tokens, dim), | |
| kps_features=latent_kps_feature, | |
| return_dict=False, | |
| )[0] | |
| for j, c in enumerate(context): | |
| noise_pred[:, :, c] = noise_pred[:, :, c] + pred | |
| counter[:, :, c] = counter[:, :, c] + 1 | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| reference_control_reader.clear() | |
| reference_control_writer.clear() | |
| if interpolation_factor > 0: | |
| latents = self.interpolate_latents(latents, interpolation_factor, device) | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| latents = latents | |
| if not return_dict: | |
| return latents | |
| return PipelineOutput(video_latents=latents) | |