navyaparesh commited on
Commit
2b1c956
·
verified ·
1 Parent(s): ba51153

Upload 5 files

Browse files
Files changed (5) hide show
  1. README.md +11 -7
  2. app.py +396 -0
  3. gitattributes +35 -0
  4. gitignore +0 -0
  5. requirements.txt +4 -0
README.md CHANGED
@@ -1,12 +1,16 @@
1
  ---
2
- title: TTS Model Testing
3
- emoji: 🐨
4
- colorFrom: pink
5
- colorTo: gray
6
  sdk: gradio
7
- sdk_version: 5.24.0
8
  app_file: app.py
9
- pinned: false
 
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Indic Parler-TTS
3
+ emoji: 👀
4
+ colorFrom: blue
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 5.7.1
8
  app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ short_description: A demo of Indic Parler-TTS
12
+ thumbnail: >-
13
+ https://cdn-uploads.huggingface.co/production/uploads/62611fcabbcbd1c34f1615f6/7v2cvg8cPKrWU0DahrbU_.png
14
  ---
15
 
16
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import math
4
+ from queue import Queue
5
+ from threading import Thread
6
+ from typing import Optional
7
+
8
+ import numpy as np
9
+ import spaces
10
+ import gradio as gr
11
+ import torch
12
+ import nltk
13
+
14
+
15
+ from parler_tts import ParlerTTSForConditionalGeneration
16
+ from pydub import AudioSegment
17
+ from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
18
+
19
+ nltk.download('punkt_tab')
20
+
21
+ device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
22
+ torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
23
+
24
+ repo_id = "ai4bharat/indic-parler-tts-pretrained"
25
+ finetuned_repo_id = "ai4bharat/indic-parler-tts"
26
+
27
+ model = ParlerTTSForConditionalGeneration.from_pretrained(
28
+ repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
29
+ ).to(device)
30
+ finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
31
+ finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
32
+ ).to(device)
33
+
34
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
35
+ description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
36
+ feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
37
+
38
+ SAMPLE_RATE = feature_extractor.sampling_rate
39
+ SEED = 42
40
+
41
+ default_text = "Please surprise me and speak in whatever voice you enjoy."
42
+ examples = [
43
+ [
44
+ "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
45
+ "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
46
+ 3.0
47
+ ],
48
+ [
49
+ "ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.",
50
+ "Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
51
+ 3.0
52
+ ],
53
+ [
54
+ "বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।",
55
+ "Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
56
+ 3.0
57
+ ],
58
+ [
59
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
60
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
61
+ 3.0
62
+ ],
63
+ [
64
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
65
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
66
+ 3.0
67
+ ],
68
+ [
69
+ "This is the best time of my life, Bartley,' she said happily",
70
+ "A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.",
71
+ 3.0
72
+ ],
73
+ [
74
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
75
+ "A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.",
76
+ 3.0
77
+ ],
78
+ [
79
+ "बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।",
80
+ "Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
81
+ 3.0
82
+ ],
83
+ [
84
+ "കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.",
85
+ "Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
86
+ 3.0
87
+ ],
88
+ [
89
+ "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
90
+ "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
91
+ 3.0
92
+ ]
93
+ ]
94
+
95
+
96
+ finetuned_examples = [
97
+ [
98
+ "मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
99
+ "Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
100
+ 3.0
101
+ ],
102
+ [
103
+ "ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.",
104
+ "Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
105
+ 3.0
106
+ ],
107
+ [
108
+ "বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।",
109
+ "Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
110
+ 3.0
111
+ ],
112
+ [
113
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
114
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
115
+ 3.0
116
+ ],
117
+ [
118
+ "పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
119
+ "Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
120
+ 3.0
121
+ ],
122
+ [
123
+ "This is the best time of my life, Bartley,' she said happily",
124
+ "A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.",
125
+ 3.0
126
+ ],
127
+ [
128
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
129
+ "A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.",
130
+ 3.0
131
+ ],
132
+ [
133
+ "बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।",
134
+ "Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
135
+ 3.0
136
+ ],
137
+ [
138
+ "കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.",
139
+ "Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
140
+ 3.0
141
+ ],
142
+ [
143
+ "குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
144
+ "Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
145
+ 3.0
146
+ ]
147
+ ]
148
+
149
+
150
+ def numpy_to_mp3(audio_array, sampling_rate):
151
+ # Normalize audio_array if it's floating-point
152
+ if np.issubdtype(audio_array.dtype, np.floating):
153
+ max_val = np.max(np.abs(audio_array))
154
+ audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
155
+ audio_array = audio_array.astype(np.int16)
156
+
157
+ # Create an audio segment from the numpy array
158
+ audio_segment = AudioSegment(
159
+ audio_array.tobytes(),
160
+ frame_rate=sampling_rate,
161
+ sample_width=audio_array.dtype.itemsize,
162
+ channels=1
163
+ )
164
+
165
+ # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
166
+ mp3_io = io.BytesIO()
167
+ audio_segment.export(mp3_io, format="mp3", bitrate="320k")
168
+
169
+ # Get the MP3 bytes
170
+ mp3_bytes = mp3_io.getvalue()
171
+ mp3_io.close()
172
+
173
+ return mp3_bytes
174
+
175
+ sampling_rate = model.audio_encoder.config.sampling_rate
176
+ frame_rate = model.audio_encoder.config.frame_rate
177
+
178
+ @spaces.GPU
179
+ def generate_base(text, description,):
180
+ # Initialize variables
181
+ chunk_size = 25 # Process max 25 words or a sentence at a time
182
+
183
+ # Tokenize the full text and description
184
+ inputs = description_tokenizer(description, return_tensors="pt").to(device)
185
+
186
+ sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
187
+ curr_sentence = ""
188
+ chunks = []
189
+ for sentence in sentences_text:
190
+ candidate = " ".join([curr_sentence, sentence])
191
+ if len(candidate.split()) >= chunk_size:
192
+ chunks.append(curr_sentence)
193
+ curr_sentence = sentence
194
+ else:
195
+ curr_sentence = candidate
196
+
197
+ if curr_sentence != "":
198
+ chunks.append(curr_sentence)
199
+
200
+ print(chunks)
201
+
202
+ all_audio = []
203
+
204
+ # Process each chunk
205
+ for chunk in chunks:
206
+ # Tokenize the chunk
207
+ prompt = tokenizer(chunk, return_tensors="pt").to(device)
208
+
209
+ # Generate audio for the chunk
210
+ generation = model.generate(
211
+ input_ids=inputs.input_ids,
212
+ attention_mask=inputs.attention_mask,
213
+ prompt_input_ids=prompt.input_ids,
214
+ prompt_attention_mask=prompt.attention_mask,
215
+ do_sample=True,
216
+ return_dict_in_generate=True
217
+ )
218
+
219
+ # Extract audio from generation
220
+ if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
221
+ audio = generation.sequences[0, :generation.audios_length[0]]
222
+ audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
223
+ if len(audio_np.shape) > 1:
224
+ audio_np = audio_np.flatten()
225
+ all_audio.append(audio_np)
226
+
227
+ # Combine all audio chunks
228
+ combined_audio = np.concatenate(all_audio)
229
+
230
+ # Convert to expected format and yield
231
+ print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
232
+ yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
233
+
234
+
235
+ @spaces.GPU
236
+ def generate_finetuned(text, description):
237
+ # Initialize variables
238
+ chunk_size = 25 # Process max 25 words or a sentence at a time
239
+
240
+ # Tokenize the full text and description
241
+ inputs = description_tokenizer(description, return_tensors="pt").to(device)
242
+
243
+ sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
244
+ curr_sentence = ""
245
+ chunks = []
246
+ for sentence in sentences_text:
247
+ candidate = " ".join([curr_sentence, sentence])
248
+ if len(candidate.split()) >= chunk_size:
249
+ chunks.append(curr_sentence)
250
+ curr_sentence = sentence
251
+ else:
252
+ curr_sentence = candidate
253
+
254
+ if curr_sentence != "":
255
+ chunks.append(curr_sentence)
256
+
257
+ print(chunks)
258
+
259
+ all_audio = []
260
+
261
+ # Process each chunk
262
+ for chunk in chunks:
263
+ # Tokenize the chunk
264
+ prompt = tokenizer(chunk, return_tensors="pt").to(device)
265
+
266
+ # Generate audio for the chunk
267
+ generation = finetuned_model.generate(
268
+ input_ids=inputs.input_ids,
269
+ attention_mask=inputs.attention_mask,
270
+ prompt_input_ids=prompt.input_ids,
271
+ prompt_attention_mask=prompt.attention_mask,
272
+ do_sample=True,
273
+ return_dict_in_generate=True
274
+ )
275
+
276
+ # Extract audio from generation
277
+ if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
278
+ audio = generation.sequences[0, :generation.audios_length[0]]
279
+ audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
280
+ if len(audio_np.shape) > 1:
281
+ audio_np = audio_np.flatten()
282
+ all_audio.append(audio_np)
283
+
284
+ # Combine all audio chunks
285
+ combined_audio = np.concatenate(all_audio)
286
+
287
+ # Convert to expected format and yield
288
+ print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
289
+ yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
290
+
291
+
292
+ css = """
293
+ #share-btn-container {
294
+ display: flex;
295
+ padding-left: 0.5rem !important;
296
+ padding-right: 0.5rem !important;
297
+ background-color: #000000;
298
+ justify-content: center;
299
+ align-items: center;
300
+ border-radius: 9999px !important;
301
+ width: 13rem;
302
+ margin-top: 10px;
303
+ margin-left: auto;
304
+ flex: unset !important;
305
+ }
306
+ #share-btn {
307
+ all: initial;
308
+ color: #ffffff;
309
+ font-weight: 600;
310
+ cursor: pointer;
311
+ font-family: 'IBM Plex Sans', sans-serif;
312
+ margin-left: 0.5rem !important;
313
+ padding-top: 0.25rem !important;
314
+ padding-bottom: 0.25rem !important;
315
+ right:0;
316
+ }
317
+ #share-btn * {
318
+ all: unset !important;
319
+ }
320
+ #share-btn-container div:nth-child(-n+2){
321
+ width: auto !important;
322
+ min-height: 0px !important;
323
+ }
324
+ #share-btn-container .wrap {
325
+ display: none !important;
326
+ }
327
+ """
328
+ with gr.Blocks(css=css) as block:
329
+ gr.HTML(
330
+ """
331
+ <div style="text-align: center; max-width: 700px; margin: 0 auto;">
332
+ <div
333
+ style="
334
+ display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
335
+ "
336
+ >
337
+ <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
338
+ Parler-TTS 🗣️
339
+ </h1>
340
+ </div>
341
+ </div>
342
+ """
343
+ )
344
+ gr.HTML(
345
+ f"""
346
+ <p><a href="https://github.com/huggingface/Parler-TTS">ParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p>
347
+
348
+ <p>Tips for effective usage:
349
+ <ul>
350
+ <li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Aditi speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li>
351
+ <li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co/ai4bharat/indic-parler-tts#%F0%9F%8E%AF-using-a-specific-speaker">model page</a>.</li>
352
+ <li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li>
353
+ <li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li>
354
+ <li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li>
355
+ </ul>
356
+ </p>
357
+ """
358
+ )
359
+
360
+ with gr.Tab("Finetuned"):
361
+ with gr.Row():
362
+ with gr.Column():
363
+ input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text")
364
+ description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description")
365
+ run_button = gr.Button("Generate Audio", variant="primary")
366
+ with gr.Column():
367
+ audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
368
+
369
+ inputs = [input_text, description]
370
+ outputs = [audio_out]
371
+ gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False)
372
+ run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True)
373
+
374
+ with gr.Tab("Pretrained"):
375
+ with gr.Row():
376
+ with gr.Column():
377
+ input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
378
+ description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
379
+ run_button = gr.Button("Generate Audio", variant="primary")
380
+ with gr.Column():
381
+ audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
382
+
383
+ inputs = [input_text, description]
384
+ outputs = [audio_out]
385
+ gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
386
+ run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
387
+
388
+
389
+ gr.HTML(
390
+ """
391
+ If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p>
392
+ """
393
+ )
394
+
395
+ block.queue()
396
+ block.launch(share=True)
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
gitignore ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ spaces
3
+ git+https://github.com/huggingface/parler-tts.git
4
+ nltk