Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Experimental app to help with the process of generating music videos
|
| 2 |
+
# Requires youtube-dl to be installed
|
| 3 |
+
# pip install youtube-dl
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import librosa
|
| 12 |
+
import numpy as np
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
import torch
|
| 15 |
+
import youtube_dl
|
| 16 |
+
from diffusers.models import AutoencoderKL
|
| 17 |
+
from diffusers.schedulers import LMSDiscreteScheduler
|
| 18 |
+
from matplotlib import pyplot as plt
|
| 19 |
+
from stable_diffusion_videos import StableDiffusionWalkPipeline, generate_images, get_timesteps_arr
|
| 20 |
+
|
| 21 |
+
pipe = StableDiffusionWalkPipeline.from_pretrained(
|
| 22 |
+
"runwayml/stable-diffusion-v1-5",
|
| 23 |
+
vae=AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema"),
|
| 24 |
+
torch_dtype=torch.float16,
|
| 25 |
+
revision="fp16",
|
| 26 |
+
safety_checker=None,
|
| 27 |
+
scheduler=LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"),
|
| 28 |
+
).to("cuda")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def download_example_clip(url, output_dir="./", output_filename="%(title)s.%(ext)s"):
|
| 32 |
+
if (Path(output_dir) / output_filename).exists():
|
| 33 |
+
return str(Path(output_dir) / output_filename)
|
| 34 |
+
|
| 35 |
+
files_before = os.listdir(output_dir) if os.path.exists(output_dir) else []
|
| 36 |
+
ydl_opts = {
|
| 37 |
+
"outtmpl": str(Path(output_dir) / output_filename),
|
| 38 |
+
"format": "bestaudio",
|
| 39 |
+
"extract-audio": True,
|
| 40 |
+
"audio-format": "mp3",
|
| 41 |
+
"audio-quality": 0,
|
| 42 |
+
}
|
| 43 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 44 |
+
ydl.download([url])
|
| 45 |
+
|
| 46 |
+
files_after = os.listdir(output_dir)
|
| 47 |
+
return str(Path(output_dir) / list(set(files_after) - set(files_before))[0])
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def audio_data_to_buffer(y, sr):
|
| 51 |
+
audio_filepath = BytesIO()
|
| 52 |
+
audio_filepath.name = "audio.wav"
|
| 53 |
+
sf.write(audio_filepath, y, samplerate=sr, format="WAV")
|
| 54 |
+
audio_filepath.seek(0)
|
| 55 |
+
return audio_filepath
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def plot_array(y):
|
| 59 |
+
fig = plt.figure()
|
| 60 |
+
x = np.arange(y.shape[0])
|
| 61 |
+
plt.title("Line graph")
|
| 62 |
+
plt.xlabel("X axis")
|
| 63 |
+
plt.ylabel("Y axis")
|
| 64 |
+
plt.plot(x, y, color="red")
|
| 65 |
+
plt.savefig("timesteps_chart.png")
|
| 66 |
+
return fig
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def on_slice_btn_click(audio, audio_start_sec, duration, fps, smooth, margin):
|
| 70 |
+
if audio is None:
|
| 71 |
+
return [
|
| 72 |
+
gr.update(visible=False),
|
| 73 |
+
gr.update(visible=False),
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
y, sr = librosa.load(audio, offset=audio_start_sec, duration=duration)
|
| 77 |
+
T = get_timesteps_arr(
|
| 78 |
+
audio_data_to_buffer(y, sr),
|
| 79 |
+
0,
|
| 80 |
+
duration,
|
| 81 |
+
fps=fps,
|
| 82 |
+
margin=margin,
|
| 83 |
+
smooth=smooth,
|
| 84 |
+
)
|
| 85 |
+
return [gr.update(value=(sr, y), visible=True), gr.update(value=plot_array(T), visible=True)]
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def on_audio_change_or_clear(audio):
|
| 89 |
+
if audio is None:
|
| 90 |
+
return [gr.update(visible=False), gr.update(visible=False)]
|
| 91 |
+
|
| 92 |
+
duration = librosa.get_duration(filename=audio)
|
| 93 |
+
return [gr.update(maximum=int(duration), visible=True), gr.update(maximum=int(min(10, duration)), visible=True)]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def on_update_weight_settings_btn_click(sliced_audio, duration, fps, smooth, margin):
|
| 97 |
+
if sliced_audio is None:
|
| 98 |
+
return gr.update(visible=False)
|
| 99 |
+
|
| 100 |
+
T = get_timesteps_arr(
|
| 101 |
+
sliced_audio,
|
| 102 |
+
0,
|
| 103 |
+
duration,
|
| 104 |
+
fps=fps,
|
| 105 |
+
margin=margin,
|
| 106 |
+
smooth=smooth,
|
| 107 |
+
)
|
| 108 |
+
return gr.update(value=plot_array(T), visible=True)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def on_generate_images_btn_click(
|
| 112 |
+
prompt_a,
|
| 113 |
+
prompt_b,
|
| 114 |
+
seed_a,
|
| 115 |
+
seed_b,
|
| 116 |
+
output_dir,
|
| 117 |
+
num_inference_steps,
|
| 118 |
+
guidance_scale,
|
| 119 |
+
height,
|
| 120 |
+
width,
|
| 121 |
+
upsample,
|
| 122 |
+
):
|
| 123 |
+
output_dir = Path(output_dir) / "images"
|
| 124 |
+
|
| 125 |
+
if seed_a == -1:
|
| 126 |
+
seed_a = random.randint(0, 9999999)
|
| 127 |
+
if seed_b == -1:
|
| 128 |
+
seed_b = random.randint(0, 9999999)
|
| 129 |
+
|
| 130 |
+
image_a_fpath = generate_images(
|
| 131 |
+
pipe,
|
| 132 |
+
prompt_a,
|
| 133 |
+
seeds=[seed_a],
|
| 134 |
+
num_inference_steps=num_inference_steps,
|
| 135 |
+
guidance_scale=guidance_scale,
|
| 136 |
+
height=height,
|
| 137 |
+
width=width,
|
| 138 |
+
upsample=upsample,
|
| 139 |
+
output_dir=output_dir,
|
| 140 |
+
)[0]
|
| 141 |
+
image_b_fpath = generate_images(
|
| 142 |
+
pipe,
|
| 143 |
+
prompt_b,
|
| 144 |
+
seeds=[seed_b],
|
| 145 |
+
num_inference_steps=num_inference_steps,
|
| 146 |
+
guidance_scale=guidance_scale,
|
| 147 |
+
height=height,
|
| 148 |
+
width=width,
|
| 149 |
+
upsample=upsample,
|
| 150 |
+
output_dir=output_dir,
|
| 151 |
+
)[0]
|
| 152 |
+
|
| 153 |
+
return [
|
| 154 |
+
gr.update(value=image_a_fpath, visible=True),
|
| 155 |
+
gr.update(value=image_b_fpath, visible=True),
|
| 156 |
+
gr.update(value=seed_a),
|
| 157 |
+
gr.update(value=seed_b),
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def on_generate_music_video_btn_click(
|
| 162 |
+
audio_filepath,
|
| 163 |
+
audio_start_sec,
|
| 164 |
+
duration,
|
| 165 |
+
fps,
|
| 166 |
+
smooth,
|
| 167 |
+
margin,
|
| 168 |
+
prompt_a,
|
| 169 |
+
prompt_b,
|
| 170 |
+
seed_a,
|
| 171 |
+
seed_b,
|
| 172 |
+
batch_size,
|
| 173 |
+
output_dir,
|
| 174 |
+
num_inference_steps,
|
| 175 |
+
guidance_scale,
|
| 176 |
+
height,
|
| 177 |
+
width,
|
| 178 |
+
upsample,
|
| 179 |
+
):
|
| 180 |
+
|
| 181 |
+
if audio_filepath is None:
|
| 182 |
+
return gr.update(visible=False)
|
| 183 |
+
|
| 184 |
+
video_filepath = pipe.walk(
|
| 185 |
+
prompts=[prompt_a, prompt_b],
|
| 186 |
+
seeds=[seed_a, seed_b],
|
| 187 |
+
num_interpolation_steps=int(duration * fps),
|
| 188 |
+
output_dir=output_dir,
|
| 189 |
+
fps=fps,
|
| 190 |
+
num_inference_steps=num_inference_steps,
|
| 191 |
+
guidance_scale=guidance_scale,
|
| 192 |
+
height=height,
|
| 193 |
+
width=width,
|
| 194 |
+
upsample=upsample,
|
| 195 |
+
batch_size=batch_size,
|
| 196 |
+
audio_filepath=audio_filepath,
|
| 197 |
+
audio_start_sec=audio_start_sec,
|
| 198 |
+
margin=margin,
|
| 199 |
+
smooth=smooth,
|
| 200 |
+
)
|
| 201 |
+
return gr.update(value=video_filepath, visible=True)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
audio_start_sec = gr.Slider(0, 10, 0, step=1, label="Start (sec)", interactive=True)
|
| 205 |
+
duration = gr.Slider(0, 10, 1, step=1, label="Duration (sec)", interactive=True)
|
| 206 |
+
slice_btn = gr.Button("Slice Audio")
|
| 207 |
+
|
| 208 |
+
sliced_audio = gr.Audio(type="filepath")
|
| 209 |
+
wav_plot = gr.Plot(label="Interpolation Weights Per Frame")
|
| 210 |
+
|
| 211 |
+
fps = gr.Slider(1, 60, 12, step=1, label="FPS", interactive=True)
|
| 212 |
+
smooth = gr.Slider(0, 1, 0.0, label="Smoothing", interactive=True)
|
| 213 |
+
margin = gr.Slider(1.0, 20.0, 1.0, step=0.5, label="Margin Max", interactive=True)
|
| 214 |
+
update_weight_settings_btn = gr.Button("Update Interpolation Weights")
|
| 215 |
+
|
| 216 |
+
prompt_a = gr.Textbox(value="blueberry spaghetti", label="Prompt A")
|
| 217 |
+
prompt_b = gr.Textbox(value="strawberry spaghetti", label="Prompt B")
|
| 218 |
+
seed_a = gr.Number(-1, label="Seed A", precision=0, interactive=True)
|
| 219 |
+
seed_b = gr.Number(-1, label="Seed B", precision=0, interactive=True)
|
| 220 |
+
generate_images_btn = gr.Button("Generate Images")
|
| 221 |
+
image_a = gr.Image(visible=False, label="Image A")
|
| 222 |
+
image_b = gr.Image(visible=False, label="Image B")
|
| 223 |
+
|
| 224 |
+
batch_size = gr.Slider(1, 32, 1, step=1, label="Batch Size", interactive=True)
|
| 225 |
+
generate_music_video_btn = gr.Button("Generate Music Video")
|
| 226 |
+
video = gr.Video(visible=False, label="Video")
|
| 227 |
+
|
| 228 |
+
STEP_1_MARKDOWN = """
|
| 229 |
+
## 1. Upload Some Audio
|
| 230 |
+
Upload an audio file to use as the source for the music video.
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
STEP_2_MARKDOWN = """
|
| 234 |
+
## 2. Slice Portion of Audio for Generated Clip
|
| 235 |
+
Here you can slice a portion of the audio to use for the generated music video. The longer the audio, the more frames will be generated (which will take longer).
|
| 236 |
+
I suggest you use this app to make music videos in segments of 5-10 seconds at a time. Then, you can stitch the videos together using a video editor or ffmpeg later.
|
| 237 |
+
**Warning**: If your audio file is short, I do no check that the duration you chose is not longer than the audio. It may cause some issues, so just be mindful of that.
|
| 238 |
+
"""
|
| 239 |
+
|
| 240 |
+
STEP_3_MARKDOWN = """
|
| 241 |
+
## 3. Set Interpolation Weight Settings
|
| 242 |
+
This section lets you play with the settings used to configure how we move through the latent space given the audio you sliced.
|
| 243 |
+
If you look at the graph on the right, you'll see in the X-axis how many frames. The Y-axis is the weight of Image A as we move through the latent space.
|
| 244 |
+
If you listen to the audio slice and look at the graph, you should see bumps at points where the audio energy is high (in our case, percussive energy).
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
STEP_4_MARKDOWN = """
|
| 248 |
+
## 4. Select Prompts, Seeds, Settings, and Generate Images
|
| 249 |
+
Here you can select the settings for image generation.
|
| 250 |
+
Then, you can select prompts and seeds for generating images.
|
| 251 |
+
- Image A will be first frame of the generated video.
|
| 252 |
+
- Image B will be last frame of the generated video.
|
| 253 |
+
- The video will be generated by interpolating between the two images using the audio you provided.
|
| 254 |
+
If you set the seeds to -1, a random seed will be used and saved for you, so you can explore different images given the same prompt.
|
| 255 |
+
"""
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
with gr.Blocks() as demo:
|
| 259 |
+
gr.Markdown(STEP_1_MARKDOWN)
|
| 260 |
+
audio = gr.Audio(type="filepath", interactive=True)
|
| 261 |
+
gr.Examples(
|
| 262 |
+
[
|
| 263 |
+
download_example_clip(
|
| 264 |
+
url="https://soundcloud.com/nateraw/thoughts", output_dir="./music", output_filename="thoughts.mp3"
|
| 265 |
+
)
|
| 266 |
+
],
|
| 267 |
+
inputs=audio,
|
| 268 |
+
outputs=[audio_start_sec, duration],
|
| 269 |
+
fn=on_audio_change_or_clear,
|
| 270 |
+
cache_examples=True,
|
| 271 |
+
)
|
| 272 |
+
audio.change(on_audio_change_or_clear, audio, [audio_start_sec, duration])
|
| 273 |
+
audio.clear(on_audio_change_or_clear, audio, [audio_start_sec, duration])
|
| 274 |
+
|
| 275 |
+
gr.Markdown(STEP_2_MARKDOWN)
|
| 276 |
+
audio_start_sec.render()
|
| 277 |
+
duration.render()
|
| 278 |
+
slice_btn.render()
|
| 279 |
+
|
| 280 |
+
slice_btn.click(
|
| 281 |
+
on_slice_btn_click, [audio, audio_start_sec, duration, fps, smooth, margin], [sliced_audio, wav_plot]
|
| 282 |
+
)
|
| 283 |
+
sliced_audio.render()
|
| 284 |
+
|
| 285 |
+
gr.Markdown(STEP_3_MARKDOWN)
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
with gr.Column(scale=4):
|
| 289 |
+
fps.render()
|
| 290 |
+
smooth.render()
|
| 291 |
+
margin.render()
|
| 292 |
+
update_weight_settings_btn.render()
|
| 293 |
+
update_weight_settings_btn.click(
|
| 294 |
+
on_update_weight_settings_btn_click, [sliced_audio, duration, fps, smooth, margin], wav_plot
|
| 295 |
+
)
|
| 296 |
+
with gr.Column(scale=3):
|
| 297 |
+
wav_plot.render()
|
| 298 |
+
|
| 299 |
+
gr.Markdown(STEP_4_MARKDOWN)
|
| 300 |
+
|
| 301 |
+
with gr.Accordion("Additional Settings", open=False):
|
| 302 |
+
output_dir = gr.Textbox(value="./dreams", label="Output Directory")
|
| 303 |
+
num_inference_steps = gr.Slider(1, 200, 50, step=10, label="Diffusion Inference Steps", interactive=True)
|
| 304 |
+
guidance_scale = gr.Slider(1.0, 25.0, 7.5, step=0.5, label="Guidance Scale", interactive=True)
|
| 305 |
+
height = gr.Slider(512, 1024, 512, step=64, label="Height", interactive=True)
|
| 306 |
+
width = gr.Slider(512, 1024, 512, step=64, label="Width", interactive=True)
|
| 307 |
+
upsample = gr.Checkbox(value=False, label="Upsample with Real-ESRGAN")
|
| 308 |
+
|
| 309 |
+
with gr.Row():
|
| 310 |
+
with gr.Column(scale=4):
|
| 311 |
+
prompt_a.render()
|
| 312 |
+
with gr.Column(scale=1):
|
| 313 |
+
seed_a.render()
|
| 314 |
+
|
| 315 |
+
with gr.Row():
|
| 316 |
+
with gr.Column(scale=4):
|
| 317 |
+
prompt_b.render()
|
| 318 |
+
with gr.Column(scale=1):
|
| 319 |
+
seed_b.render()
|
| 320 |
+
|
| 321 |
+
generate_images_btn.render()
|
| 322 |
+
|
| 323 |
+
with gr.Row():
|
| 324 |
+
with gr.Column(scale=1):
|
| 325 |
+
image_a.render()
|
| 326 |
+
with gr.Column(scale=1):
|
| 327 |
+
image_b.render()
|
| 328 |
+
|
| 329 |
+
generate_images_btn.click(
|
| 330 |
+
on_generate_images_btn_click,
|
| 331 |
+
[prompt_a, prompt_b, seed_a, seed_b, output_dir, num_inference_steps, guidance_scale, height, width, upsample],
|
| 332 |
+
[image_a, image_b, seed_a, seed_b],
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
gr.Markdown("## 5. Generate Music Video")
|
| 336 |
+
# TODO - add equivalent code snippet to generate music video
|
| 337 |
+
batch_size.render()
|
| 338 |
+
generate_music_video_btn.render()
|
| 339 |
+
generate_music_video_btn.click(
|
| 340 |
+
on_generate_music_video_btn_click,
|
| 341 |
+
[
|
| 342 |
+
audio,
|
| 343 |
+
audio_start_sec,
|
| 344 |
+
duration,
|
| 345 |
+
fps,
|
| 346 |
+
smooth,
|
| 347 |
+
margin,
|
| 348 |
+
prompt_a,
|
| 349 |
+
prompt_b,
|
| 350 |
+
seed_a,
|
| 351 |
+
seed_b,
|
| 352 |
+
batch_size,
|
| 353 |
+
output_dir,
|
| 354 |
+
num_inference_steps,
|
| 355 |
+
guidance_scale,
|
| 356 |
+
height,
|
| 357 |
+
width,
|
| 358 |
+
upsample,
|
| 359 |
+
],
|
| 360 |
+
video,
|
| 361 |
+
)
|
| 362 |
+
video.render()
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
if __name__ == "__main__":
|
| 366 |
+
demo.launch(debug=True)
|