jupyterlab-test2 / create_dataset.py
nateraw's picture
Create create_dataset.py (#1)
0651587
raw
history blame
4.26 kB
import subprocess
from pathlib import Path
import librosa
from scipy.io import wavfile
import numpy as np
from demucs.pretrained import get_model, DEFAULT_MODEL
from demucs.apply import apply_model
import torch
import csv
import whisper
def download_youtube_clip(video_identifier, start_time, end_time, output_filename, num_attempts=5, url_base="https://www.youtube.com/watch?v="):
status = False
output_path = Path(output_filename)
if output_path.exists():
return True, "Already Downloaded"
command = f"""
yt-dlp --quiet --no-warnings -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}"
""".strip()
attempts = 0
while True:
try:
output = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as err:
attempts += 1
if attempts == num_attempts:
return status, err.output
else:
break
status = output_path.exists()
return status, "Downloaded"
def split_long_audio(model, filepaths, character_name, save_dir="data_dir", out_sr=44100):
if isinstance(filepaths, str):
filepaths = [filepaths]
for file_idx, filepath in enumerate(filepaths):
save_path = Path(save_dir) / character_name
save_path.mkdir(exist_ok=True, parents=True)
print(f"Transcribing file {file_idx}: '{filepath}' to segments...")
result = model.transcribe(filepath, word_timestamps=True, task="transcribe", beam_size=5, best_of=5)
segments = result['segments']
wav, sr = librosa.load(filepath, sr=None, offset=0, duration=None, mono=True)
wav, _ = librosa.effects.trim(wav, top_db=20)
peak = np.abs(wav).max()
if peak > 1.0:
wav = 0.98 * wav / peak
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=out_sr)
wav2 /= max(wav2.max(), -wav2.min())
for i, seg in enumerate(segments):
start_time = seg['start']
end_time = seg['end']
wav_seg = wav2[int(start_time * out_sr):int(end_time * out_sr)]
wav_seg_name = f"{character_name}_{file_idx}_{i}.wav"
out_fpath = save_path / wav_seg_name
wavfile.write(out_fpath, rate=out_sr, data=(wav_seg * np.iinfo(np.int16).max).astype(np.int16))
def extract_vocal_demucs(model, filename, out_filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
wav, sr = librosa.load(filename, mono=False, sr=sr)
wav = torch.tensor(wav)
ref = wav.mean(0)
wav = (wav - ref.mean()) / ref.std()
sources = apply_model(
model,
wav[None],
device=device,
shifts=shifts,
split=split,
overlap=overlap,
progress=True,
num_workers=jobs
)[0]
sources = sources * ref.std() + ref.mean()
wav = sources[-1]
wav = wav / max(1.01 * wav.abs().max(), 1)
wavfile.write(out_filename, rate=sr, data=wav.numpy().T)
return out_filename
def main(
clips_csv_filepath = "theovon.csv",
character = "theovon",
do_extract_vocals = False,
whisper_size = "medium",
# Where raw yt clips will be downloaded to
dl_dir = "raw_data",
# Where actual data will be organized
data_dir = "prepared_data",
):
dl_path = Path(dl_dir) / character
dl_path.mkdir(exist_ok=True, parents=True)
if do_extract_vocals:
demucs_model = get_model(DEFAULT_MODEL)
with Path(clips_csv_filepath).open() as f:
reader = csv.DictReader(f)
for i, row in enumerate(reader):
outfile_path = dl_path / f"{character}_{i:04d}.wav"
download_youtube_clip(row['ytid'], row['start'], row['end'], outfile_path)
if do_extract_vocals:
extract_vocal_demucs(demucs_model, outfile_path, outfile_path)
filenames = sorted([str(x) for x in dl_path.glob("*.wav")])
whisper_model = whisper.load_model(whisper_size)
split_long_audio(whisper_model, filenames, character, data_dir)
if __name__ == '__main__':
import json
cfg = json.loads(Path('dataset_config.json').read_text())
main(**cfg)