Spaces:
Paused
Paused
import subprocess | |
from pathlib import Path | |
import librosa | |
from scipy.io import wavfile | |
import numpy as np | |
from demucs.pretrained import get_model, DEFAULT_MODEL | |
from demucs.apply import apply_model | |
import torch | |
import csv | |
import whisper | |
def download_youtube_clip(video_identifier, start_time, end_time, output_filename, num_attempts=5, url_base="https://www.youtube.com/watch?v="): | |
status = False | |
output_path = Path(output_filename) | |
if output_path.exists(): | |
return True, "Already Downloaded" | |
command = f""" | |
yt-dlp --quiet --no-warnings -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" | |
""".strip() | |
attempts = 0 | |
while True: | |
try: | |
output = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) | |
except subprocess.CalledProcessError as err: | |
attempts += 1 | |
if attempts == num_attempts: | |
return status, err.output | |
else: | |
break | |
status = output_path.exists() | |
return status, "Downloaded" | |
def split_long_audio(model, filepaths, character_name, save_dir="data_dir", out_sr=44100): | |
if isinstance(filepaths, str): | |
filepaths = [filepaths] | |
for file_idx, filepath in enumerate(filepaths): | |
save_path = Path(save_dir) / character_name | |
save_path.mkdir(exist_ok=True, parents=True) | |
print(f"Transcribing file {file_idx}: '{filepath}' to segments...") | |
result = model.transcribe(filepath, word_timestamps=True, task="transcribe", beam_size=5, best_of=5) | |
segments = result['segments'] | |
wav, sr = librosa.load(filepath, sr=None, offset=0, duration=None, mono=True) | |
wav, _ = librosa.effects.trim(wav, top_db=20) | |
peak = np.abs(wav).max() | |
if peak > 1.0: | |
wav = 0.98 * wav / peak | |
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=out_sr) | |
wav2 /= max(wav2.max(), -wav2.min()) | |
for i, seg in enumerate(segments): | |
start_time = seg['start'] | |
end_time = seg['end'] | |
wav_seg = wav2[int(start_time * out_sr):int(end_time * out_sr)] | |
wav_seg_name = f"{character_name}_{file_idx}_{i}.wav" | |
out_fpath = save_path / wav_seg_name | |
wavfile.write(out_fpath, rate=out_sr, data=(wav_seg * np.iinfo(np.int16).max).astype(np.int16)) | |
def extract_vocal_demucs(model, filename, out_filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0): | |
wav, sr = librosa.load(filename, mono=False, sr=sr) | |
wav = torch.tensor(wav) | |
ref = wav.mean(0) | |
wav = (wav - ref.mean()) / ref.std() | |
sources = apply_model( | |
model, | |
wav[None], | |
device=device, | |
shifts=shifts, | |
split=split, | |
overlap=overlap, | |
progress=True, | |
num_workers=jobs | |
)[0] | |
sources = sources * ref.std() + ref.mean() | |
wav = sources[-1] | |
wav = wav / max(1.01 * wav.abs().max(), 1) | |
wavfile.write(out_filename, rate=sr, data=wav.numpy().T) | |
return out_filename | |
def main( | |
clips_csv_filepath = "theovon.csv", | |
character = "theovon", | |
do_extract_vocals = False, | |
whisper_size = "medium", | |
# Where raw yt clips will be downloaded to | |
dl_dir = "raw_data", | |
# Where actual data will be organized | |
data_dir = "prepared_data", | |
): | |
dl_path = Path(dl_dir) / character | |
dl_path.mkdir(exist_ok=True, parents=True) | |
if do_extract_vocals: | |
demucs_model = get_model(DEFAULT_MODEL) | |
with Path(clips_csv_filepath).open() as f: | |
reader = csv.DictReader(f) | |
for i, row in enumerate(reader): | |
outfile_path = dl_path / f"{character}_{i:04d}.wav" | |
download_youtube_clip(row['ytid'], row['start'], row['end'], outfile_path) | |
if do_extract_vocals: | |
extract_vocal_demucs(demucs_model, outfile_path, outfile_path) | |
filenames = sorted([str(x) for x in dl_path.glob("*.wav")]) | |
whisper_model = whisper.load_model(whisper_size) | |
split_long_audio(whisper_model, filenames, character, data_dir) | |
if __name__ == '__main__': | |
import json | |
cfg = json.loads(Path('dataset_config.json').read_text()) | |
main(**cfg) | |