Spaces:
Runtime error
Runtime error
File size: 44,394 Bytes
cb13344 9f0042c a74a84f 77f523a a74a84f e099112 77f523a a74a84f cb13344 7b754ce dd67811 7b754ce dd67811 cb13344 9f0042c a74a84f bdc6438 a74a84f bdc6438 a74a84f bdc6438 a74a84f bdc6438 189fe15 bdc6438 189fe15 bdc6438 a74a84f bdc6438 c9a9197 bdc6438 c9a9197 bdc6438 c9a9197 bdc6438 c9a9197 bdc6438 a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 9f0042c a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 4128a97 c9a9197 4128a97 a74a84f 4128a97 a74a84f 4128a97 a74a84f 59a4304 49575a4 fefcc45 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 189fe15 49575a4 fefcc45 59a4304 a74a84f 59a4304 49575a4 4128a97 fefcc45 a74a84f 59a4304 fefcc45 a74a84f 59a4304 a74a84f 59a4304 a74a84f 59a4304 a74a84f 59a4304 a74a84f 59a4304 fefcc45 59a4304 fefcc45 59a4304 fefcc45 59a4304 fefcc45 a74a84f fefcc45 59a4304 a74a84f fefcc45 a74a84f fefcc45 a74a84f 59a4304 fefcc45 59a4304 fefcc45 59a4304 fefcc45 59a4304 c9a9197 59a4304 fefcc45 59a4304 fefcc45 a74a84f fefcc45 9f0042c fefcc45 59a4304 a74a84f fefcc45 59a4304 a74a84f 59a4304 0805b52 fefcc45 59a4304 9f0042c a74a84f bc8d692 a74a84f fefcc45 bc8d692 fefcc45 bc8d692 a74a84f fefcc45 59a4304 9f0042c bc8d692 fefcc45 bc8d692 fefcc45 bc8d692 fefcc45 bc8d692 fefcc45 bc8d692 0028ee5 8172412 0028ee5 8172412 0028ee5 9f0042c 6abb09c 0028ee5 6abb09c a74a84f 6abb09c a74a84f 6abb09c 0028ee5 6abb09c 0028ee5 8172412 6abb09c 0028ee5 8172412 6abb09c a74a84f cb13344 0028ee5 a74a84f 0028ee5 8172412 0028ee5 cb13344 bc8d692 cb13344 6abb09c a74a84f 8172412 bc8d692 6abb09c bc8d692 fefcc45 bc8d692 fefcc45 bc8d692 fefcc45 6abb09c a74a84f fefcc45 cb13344 0028ee5 a74a84f 0028ee5 a74a84f 0028ee5 a74a84f 9f0042c a74a84f 6abb09c ebc6e25 6abb09c a74a84f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
import os
import json
import logging
import asyncio
import time
from datetime import datetime
from enum import Enum
from typing import Dict, List, Optional, Set, Union, Any
from dataclasses import dataclass, field
from pathlib import Path
import hashlib
import tempfile
import shutil
import gradio as gr
import networkx as nx
from langchain.prompts import PromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
from langchain.agents import Tool, AgentType
from langchain_community.llms import HuggingFacePipeline
from langchain_community.agents import initialize_agent
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import subprocess
import asyncio
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Load the LLM and tokenizer
def load_model():
"""Load the model and tokenizer."""
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "gpt2" # Using a smaller model for testing
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise
# Initialize models lazily
tokenizer = None
model = None
hf_pipeline = None
llm = None
def get_llm():
"""Get or initialize the language model."""
global llm, tokenizer, model, hf_pipeline
try:
if llm is None:
tokenizer, model = load_model()
hf_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=500,
pad_token_id=tokenizer.eos_token_id,
temperature=0.7,
return_full_text=False,
)
llm = HuggingFacePipeline(
pipeline=hf_pipeline,
model_kwargs={"max_length": 2048}
)
return llm
except Exception as e:
logger.error(f"Failed to get LLM: {str(e)}")
raise
def get_agent(agent_type):
"""Get or initialize an agent with the specified type."""
try:
llm = get_llm()
tools = [
Tool(
name="Code Formatter",
func=lambda x: subprocess.run(["black", "-"], input=x.encode(), capture_output=True).stdout.decode(),
description="Formats code using Black.",
),
Tool(
name="API Generator",
func=lambda x: json.dumps({"endpoints": {"example": "POST - Example endpoint."}}),
description="Generates API details from code.",
),
Tool(
name="Task Decomposer",
func=lambda x: json.dumps({"tasks": ["Design UI", "Develop Backend", "Test App", "Deploy App"]}),
description="Breaks down app requirements into smaller tasks.",
),
]
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
agent_kwargs = {
"extra_prompt_messages": [MessagesPlaceholder(variable_name="chat_history")],
}
return initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
verbose=True,
memory=memory,
agent_kwargs=agent_kwargs,
handle_parsing_errors=True,
)
except Exception as e:
logger.error(f"Failed to get agent: {str(e)}")
raise
# Enhanced prompt templates with more specific instructions
ui_designer_prompt = PromptTemplate(
input_variables=["input"],
template="""You are an expert UI Designer specializing in modern, responsive web applications.
Task: {input}
Focus on:
1. Clean, intuitive user interface
2. Responsive design principles
3. Modern UI components
4. Accessibility standards
5. Cross-browser compatibility
Generate code using:
- HTML5 semantic elements
- Modern CSS (Flexbox/Grid)
- React/Vue.js best practices
- Material UI or Tailwind CSS
Provide detailed component structure and styling."""
)
backend_developer_prompt = PromptTemplate(
input_variables=["input"],
template="""You are an expert Backend Developer specializing in scalable applications.
Task: {input}
Focus on:
1. RESTful API design
2. Database schema optimization
3. Security best practices
4. Error handling
5. Performance optimization
Include:
- API endpoint definitions
- Database models
- Authentication/Authorization
- Input validation
- Error handling middleware
- Rate limiting
- Logging
Use modern backend frameworks (FastAPI/Django/Express)."""
)
qa_engineer_prompt = PromptTemplate(
input_variables=["input"],
template="""You are an expert QA Engineer focusing on comprehensive testing.
Task: {input}
Implement:
1. Unit tests
2. Integration tests
3. API endpoint tests
4. UI component tests
5. Performance tests
Include:
- Test cases for edge cases
- Input validation tests
- Error handling tests
- Load testing scenarios
- Security testing checks"""
)
devops_engineer_prompt = PromptTemplate(
input_variables=["input"],
template="""You are an expert DevOps Engineer specializing in modern deployment practices.
Task: {input}
Provide:
1. Dockerfile configuration
2. Docker Compose setup
3. CI/CD pipeline configuration
4. Environment configuration
5. Monitoring setup
Include:
- Development/Production configs
- Environment variables
- Health checks
- Logging setup
- Monitoring integration
- Backup strategies"""
)
def generate_project_structure(app_name, features):
"""Generate a complete project structure based on features."""
return f"""
{app_name}/
├── frontend/
│ ├── src/
│ │ ├── components/
│ │ ├── pages/
│ │ ├── hooks/
│ │ ├── utils/
│ │ └── styles/
│ ├── package.json
│ └── README.md
├── backend/
│ ├── src/
│ │ ├── routes/
│ │ ├── controllers/
│ │ ├── models/
│ │ ├── middleware/
│ │ └── utils/
│ ├── requirements.txt
│ └── README.md
├── tests/
│ ├── unit/
│ ├── integration/
│ └── e2e/
├── docs/
│ ├── API.md
│ ├── SETUP.md
│ └── DEPLOYMENT.md
├── docker-compose.yml
├── .env.example
└── README.md
"""
def generate_documentation(app_name, features, api_details):
"""Generate comprehensive documentation."""
return f"""
# {app_name}
## Overview
A modern web application with the following features:
{features}
## Quick Start
```bash
# Clone the repository
git clone <repository-url>
# Install dependencies
cd {app_name}
# Frontend
cd frontend && npm install
# Backend
cd ../backend && pip install -r requirements.txt
# Run the application
docker-compose up
```
## API Documentation
{api_details}
## Development
- Frontend: React.js with TypeScript
- Backend: Python with FastAPI
- Database: PostgreSQL
- Cache: Redis
- Testing: Jest, Pytest
## Deployment
Includes Docker configuration for easy deployment:
- Frontend container
- Backend container
- Database container
- Redis container
## Testing
```bash
# Run frontend tests
cd frontend && npm test
# Run backend tests
cd backend && pytest
```
## Contributing
Please read CONTRIBUTING.md for details on our code of conduct and the process for submitting pull requests.
## License
This project is licensed under the MIT License - see the LICENSE.md file for details
"""
# AI Flow States and Types
class FlowState(Enum):
PENDING = "pending"
RUNNING = "running"
COMPLETED = "completed"
FAILED = "failed"
class AgentRole(Enum):
ARCHITECT = "architect"
UI_DESIGNER = "ui_designer"
BACKEND_DEVELOPER = "backend_developer"
DATABASE_ENGINEER = "database_engineer"
SECURITY_EXPERT = "security_expert"
QA_ENGINEER = "qa_engineer"
DEVOPS_ENGINEER = "devops_engineer"
DOCUMENTATION_WRITER = "documentation_writer"
@dataclass
class AgentContext:
"""Context information for each agent in the flow."""
role: AgentRole
state: FlowState
artifacts: Dict[str, str]
dependencies: List[AgentRole]
feedback: List[str]
class AIFlow:
"""Manages the flow of work between different AI agents."""
def __init__(self):
self.flow_graph = nx.DiGraph()
self.contexts: Dict[AgentRole, AgentContext] = {}
self.global_context = {}
def initialize_flow(self):
"""Initialize the AI Flow with agent relationships and dependencies."""
# Define agent relationships
flow_structure = {
AgentRole.ARCHITECT: [AgentRole.UI_DESIGNER, AgentRole.BACKEND_DEVELOPER, AgentRole.DATABASE_ENGINEER],
AgentRole.UI_DESIGNER: [AgentRole.QA_ENGINEER],
AgentRole.BACKEND_DEVELOPER: [AgentRole.SECURITY_EXPERT, AgentRole.QA_ENGINEER],
AgentRole.DATABASE_ENGINEER: [AgentRole.SECURITY_EXPERT],
AgentRole.SECURITY_EXPERT: [AgentRole.QA_ENGINEER],
AgentRole.QA_ENGINEER: [AgentRole.DEVOPS_ENGINEER],
AgentRole.DEVOPS_ENGINEER: [AgentRole.DOCUMENTATION_WRITER],
AgentRole.DOCUMENTATION_WRITER: []
}
# Build the flow graph
for role, dependencies in flow_structure.items():
self.flow_graph.add_node(role)
for dep in dependencies:
self.flow_graph.add_edge(role, dep)
# Initialize context for each agent
self.contexts[role] = AgentContext(
role=role,
state=FlowState.PENDING,
artifacts={},
dependencies=dependencies,
feedback=[]
)
async def execute_flow(self, requirements: str):
"""Execute the AI Flow with parallel processing where possible."""
try:
self.initialize_flow()
self.global_context["requirements"] = requirements
# Get all paths through the flow graph
paths = list(nx.all_simple_paths(
self.flow_graph,
AgentRole.ARCHITECT,
AgentRole.DOCUMENTATION_WRITER
))
# Execute paths in parallel
await self._execute_paths(paths)
return self._compile_results()
except Exception as e:
logger.error(f"Flow execution failed: {str(e)}")
raise
async def _execute_paths(self, paths: List[List[AgentRole]]):
"""Execute all paths in the flow graph."""
try:
results = []
for path in paths:
path_results = []
for role in path:
# Get the agent's prompt based on previous results
prompt = self._generate_prompt(role, path_results)
# Execute the agent's task
result = await self._execute_agent_task(role, prompt)
path_results.append(result)
# Store result in context
self.context_manager.add_memory(
f"{role.value}_result",
result,
{"timestamp": datetime.now()}
)
results.extend(path_results)
# Store all results in context
self.context_manager.add_memory(
"path_results",
results,
{"timestamp": datetime.now()}
)
return results
except Exception as e:
logger.error(f"Failed to execute paths: {str(e)}")
raise
def _generate_prompt(self, role: AgentRole, previous_results: List[str]) -> str:
"""Generate a prompt for an agent based on previous results."""
requirements = self.context_manager.global_context.get("requirements", "")
# Base prompt with requirements
prompt = f"Requirements: {requirements}\n\n"
# Add context from previous results
if previous_results:
prompt += "Previous work:\n"
for i, result in enumerate(previous_results):
prompt += f"{i+1}. {result}\n"
# Add role-specific instructions
if role == AgentRole.ARCHITECT:
prompt += "\nAs the Architect, design the high-level system architecture."
elif role == AgentRole.UI_DESIGNER:
prompt += "\nAs the UI Designer, create the user interface design."
elif role == AgentRole.BACKEND_DEVELOPER:
prompt += "\nAs the Backend Developer, implement the server-side logic."
elif role == AgentRole.DATABASE_ENGINEER:
prompt += "\nAs the Database Engineer, design the data model and storage."
elif role == AgentRole.SECURITY_EXPERT:
prompt += "\nAs the Security Expert, ensure security best practices."
elif role == AgentRole.QA_ENGINEER:
prompt += "\nAs the QA Engineer, create test cases and validation."
elif role == AgentRole.DEVOPS_ENGINEER:
prompt += "\nAs the DevOps Engineer, set up deployment and CI/CD."
elif role == AgentRole.DOCUMENTATION_WRITER:
prompt += "\nAs the Documentation Writer, create comprehensive documentation."
return prompt
def _compile_results(self) -> str:
"""Compile all results into a final output."""
try:
results = []
# Get all results from memory
for role in AgentRole:
result = self.context_manager.get_memory(f"{role.value}_result")
if result:
results.append(f"## {role.value}\n{result['value']}\n")
return "\n".join(results)
except Exception as e:
logger.error(f"Failed to compile results: {str(e)}")
raise
async def _execute_agent_task(self, role: AgentRole, prompt: str) -> str:
"""Execute a specific agent's task with the given prompt."""
try:
if role == AgentRole.ARCHITECT:
agent = get_agent("architect")
elif role == AgentRole.UI_DESIGNER:
agent = get_agent("ui_designer")
elif role == AgentRole.BACKEND_DEVELOPER:
agent = get_agent("backend_developer")
elif role == AgentRole.DATABASE_ENGINEER:
agent = get_agent("database_engineer")
elif role == AgentRole.SECURITY_EXPERT:
agent = get_agent("security_expert")
elif role == AgentRole.QA_ENGINEER:
agent = get_agent("qa_engineer")
elif role == AgentRole.DEVOPS_ENGINEER:
agent = get_agent("devops_engineer")
elif role == AgentRole.DOCUMENTATION_WRITER:
agent = get_agent("documentation_writer")
else:
raise ValueError(f"Unknown agent role: {role}")
# Execute the agent's task
result = await asyncio.to_thread(agent.run, prompt)
# Log the execution
logger.info(f"Agent {role.value} completed task")
return result
except Exception as e:
logger.error(f"Agent {role.value} failed: {str(e)}")
raise
@dataclass
class FileContext:
"""Context for file operations and tracking."""
path: Path
content: str
last_modified: datetime
dependencies: Set[Path]
checksum: str
@classmethod
def from_path(cls, path: Path):
content = path.read_text()
return cls(
path=path,
content=content,
last_modified=datetime.fromtimestamp(path.stat().st_mtime),
dependencies=set(),
checksum=hashlib.md5(content.encode()).hexdigest()
)
@dataclass
class MemoryItem:
"""Represents a single memory item in the system."""
key: str
value: Any
context: dict
timestamp: datetime
importance: float = 1.0
references: Set[str] = field(default_factory=set)
class ContextManager:
"""Manages real-time context awareness across the system."""
def __init__(self):
self.file_contexts: Dict[Path, FileContext] = {}
self.global_context: Dict[str, Any] = {}
self.command_history: List[Dict] = []
self.memory_store: Dict[str, MemoryItem] = {}
def update_file_context(self, path: Path) -> FileContext:
"""Update context for a specific file."""
context = FileContext.from_path(path)
self.file_contexts[path] = context
return context
def get_related_files(self, path: Path) -> Set[Path]:
"""Find files related to the given file."""
if path not in self.file_contexts:
self.update_file_context(path)
context = self.file_contexts[path]
return context.dependencies
def track_command(self, command: str, args: List[str], result: Any):
"""Track command execution and results."""
self.command_history.append({
'command': command,
'args': args,
'result': result,
'timestamp': datetime.now(),
})
def add_memory(self, key: str, value: Any, context: dict = None):
"""Add an item to the memory store."""
self.memory_store[key] = MemoryItem(
key=key,
value=value,
context=context or {},
timestamp=datetime.now()
)
def get_memory(self, key: str) -> Any:
"""Retrieve an item from memory."""
item = self.memory_store.get(key)
return item.value if item else None
class FileOperationManager:
"""Manages multi-file operations and tracking."""
def __init__(self, context_manager: ContextManager):
self.context_manager = context_manager
self.pending_changes: Dict[Path, str] = {}
async def edit_files(self, changes: Dict[Path, str]):
"""Apply changes to multiple files atomically."""
try:
# Validate all changes first
for path, content in changes.items():
if not self._validate_change(path, content):
raise ValueError(f"Invalid change for {path}")
# Apply changes
for path, content in changes.items():
await self._apply_change(path, content)
# Update contexts
for path in changes:
self.context_manager.update_file_context(path)
except Exception as e:
logger.error(f"Failed to apply multi-file changes: {str(e)}")
raise
def _validate_change(self, path: Path, content: str) -> bool:
"""Validate a proposed file change."""
try:
# Check file exists or can be created
if not path.parent.exists():
path.parent.mkdir(parents=True)
# Validate syntax if it's a Python file
if path.suffix == '.py':
compile(content, str(path), 'exec')
return True
except Exception as e:
logger.error(f"Validation failed for {path}: {str(e)}")
return False
async def _apply_change(self, path: Path, content: str):
"""Apply a single file change."""
path.write_text(content)
class CommandManager:
"""Manages command suggestions and execution."""
def __init__(self, context_manager: ContextManager):
self.context_manager = context_manager
self.command_templates: Dict[str, str] = {}
def suggest_commands(self, context: dict) -> List[Dict]:
"""Suggest relevant commands based on context."""
suggestions = []
for cmd_name, template in self.command_templates.items():
if self._is_relevant(cmd_name, context):
suggestions.append({
'command': cmd_name,
'template': template,
'confidence': self._calculate_confidence(cmd_name, context)
})
return sorted(suggestions, key=lambda x: x['confidence'], reverse=True)
async def execute_command(self, command: str, args: List[str]) -> Any:
"""Execute a command and track its result."""
try:
# Execute the command
result = await self._run_command(command, args)
# Track the execution
self.context_manager.track_command(command, args, result)
return result
except Exception as e:
logger.error(f"Command execution failed: {str(e)}")
raise
def _is_relevant(self, cmd_name: str, context: dict) -> bool:
"""Determine if a command is relevant to the current context."""
# Implementation depends on specific rules
return True
def _calculate_confidence(self, cmd_name: str, context: dict) -> float:
"""Calculate confidence score for a command suggestion."""
# Implementation depends on specific metrics
return 1.0
class RuleSystem:
"""Manages system rules and constraints."""
def __init__(self):
self.rules: Dict[str, callable] = {}
self.constraints: Dict[str, callable] = {}
def add_rule(self, name: str, rule_func: callable):
"""Add a new rule to the system."""
self.rules[name] = rule_func
def add_constraint(self, name: str, constraint_func: callable):
"""Add a new constraint to the system."""
self.constraints[name] = constraint_func
def evaluate_rules(self, context: dict) -> Dict[str, bool]:
"""Evaluate all rules against the current context."""
return {name: rule(context) for name, rule in self.rules.items()}
def check_constraints(self, context: dict) -> Dict[str, bool]:
"""Check all constraints against the current context."""
return {name: constraint(context) for name, constraint in self.constraints.items()}
class ProjectBuilder:
"""Handles autonomous creation of project files and folders."""
def __init__(self, base_path: Path):
self.base_path = Path(base_path)
self.current_build = None
self.file_manifest = []
async def create_project(self, app_name: str, structure: dict) -> Path:
"""Create a new project with the specified structure."""
try:
# Create temporary build directory
build_dir = Path(tempfile.mkdtemp())
self.current_build = build_dir / app_name
self.current_build.mkdir(parents=True)
# Create project structure
await self._create_structure(self.current_build, structure)
return self.current_build
except Exception as e:
logger.error(f"Project creation failed: {str(e)}")
if self.current_build and self.current_build.exists():
shutil.rmtree(self.current_build)
raise
async def _create_structure(self, parent: Path, structure: dict):
"""Recursively create project structure."""
for name, content in structure.items():
path = parent / name
if isinstance(content, dict):
path.mkdir(exist_ok=True)
await self._create_structure(path, content)
else:
path.write_text(str(content))
self.file_manifest.append(path)
class OutputManager:
"""Manages project outputs and creates downloadable artifacts."""
def __init__(self, project_builder: ProjectBuilder):
self.project_builder = project_builder
self.output_dir = Path(tempfile.mkdtemp())
self.downloads = {}
def create_download(self, app_name: str) -> str:
"""Create a downloadable zip file of the project."""
try:
if not self.project_builder.current_build:
raise ValueError("No project has been built yet")
# Create zip file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
zip_name = f"{app_name}_{timestamp}.zip"
zip_path = self.output_dir / zip_name
with ZipFile(zip_path, 'w') as zipf:
for file_path in self.project_builder.file_manifest:
rel_path = file_path.relative_to(self.project_builder.current_build)
zipf.write(file_path, rel_path)
# Store download info
self.downloads[zip_name] = {
'path': zip_path,
'created_at': datetime.now(),
'size': zip_path.stat().st_size
}
return str(zip_path)
except Exception as e:
logger.error(f"Failed to create download: {str(e)}")
raise
class EnhancedAIFlow(AIFlow):
"""Enhanced AI Flow with project building and output management."""
def __init__(self):
super().__init__()
self.project_builder = ProjectBuilder(Path(tempfile.mkdtemp()))
self.output_manager = OutputManager(self.project_builder)
self.context_manager = ContextManager()
self.file_manager = FileOperationManager(self.context_manager)
self.command_manager = CommandManager(self.context_manager)
self.rule_system = RuleSystem()
self.flow_graph = nx.DiGraph()
self.contexts: Dict[AgentRole, AgentContext] = {}
self.global_context = {}
self.requirements = ""
def initialize_flow(self):
"""Initialize the AI Flow with agent relationships and dependencies."""
# Create nodes for each agent role
for role in AgentRole:
self.flow_graph.add_node(role)
self.contexts[role] = AgentContext(
role=role,
state=FlowState.PENDING,
artifacts={},
dependencies=[],
feedback=[]
)
# Define dependencies
dependencies = {
AgentRole.UI_DESIGNER: [AgentRole.ARCHITECT],
AgentRole.BACKEND_DEVELOPER: [AgentRole.ARCHITECT],
AgentRole.DATABASE_ENGINEER: [AgentRole.ARCHITECT, AgentRole.BACKEND_DEVELOPER],
AgentRole.SECURITY_EXPERT: [AgentRole.ARCHITECT, AgentRole.BACKEND_DEVELOPER],
AgentRole.QA_ENGINEER: [AgentRole.UI_DESIGNER, AgentRole.BACKEND_DEVELOPER],
AgentRole.DEVOPS_ENGINEER: [AgentRole.BACKEND_DEVELOPER, AgentRole.DATABASE_ENGINEER],
AgentRole.DOCUMENTATION_WRITER: [AgentRole.ARCHITECT, AgentRole.UI_DESIGNER, AgentRole.BACKEND_DEVELOPER]
}
# Add edges based on dependencies
for role, deps in dependencies.items():
for dep in deps:
self.flow_graph.add_edge(dep, role)
self.contexts[role].dependencies.extend(deps)
def _generate_prompt(self, role: AgentRole) -> str:
"""Generate a prompt for an agent based on context and dependencies."""
try:
context = self.contexts[role]
dependencies_output = []
# Gather outputs from dependencies (limited to last 1000 chars)
for dep_role in context.dependencies:
dep_context = self.contexts[dep_role]
if dep_context.state == FlowState.COMPLETED and "output" in dep_context.artifacts:
output = dep_context.artifacts['output']
if len(output) > 1000:
output = output[:997] + "..."
dependencies_output.append(f"## {dep_role.value} Output:\n{output}")
# Build role-specific prompts (with size limits)
role_prompts = {
AgentRole.ARCHITECT: """Design the high-level architecture (brief overview):
Requirements: {requirements}
Focus: system design, components, tech stack, data flow, scalability""",
AgentRole.UI_DESIGNER: """Design the UI (key elements):
Requirements: {requirements}
Previous: {dependencies}
Focus: UX, layout, responsiveness, themes""",
AgentRole.BACKEND_DEVELOPER: """Implement core backend logic:
Requirements: {requirements}
Architecture: {dependencies}
Focus: API, business logic, validation""",
AgentRole.DATABASE_ENGINEER: """Design data layer:
Requirements: {requirements}
Context: {dependencies}
Focus: schema, relationships, optimization""",
AgentRole.SECURITY_EXPERT: """Review security:
Requirements: {requirements}
Context: {dependencies}
Focus: auth, data protection, best practices""",
AgentRole.QA_ENGINEER: """Design testing:
Requirements: {requirements}
Implementation: {dependencies}
Focus: coverage, automation, edge cases""",
AgentRole.DEVOPS_ENGINEER: """Setup deployment:
Requirements: {requirements}
Context: {dependencies}
Focus: CI/CD, infrastructure, monitoring""",
AgentRole.DOCUMENTATION_WRITER: """Create docs:
Requirements: {requirements}
System: {dependencies}
Focus: setup, API docs, guides"""
}
# Get the base prompt for the role
base_prompt = role_prompts.get(role, "")
# Truncate requirements if too long
requirements = self.requirements
if len(requirements) > 1000:
requirements = requirements[:997] + "..."
# Format the prompt with requirements and dependencies
formatted_prompt = base_prompt.format(
requirements=requirements,
dependencies="\n\n".join(dependencies_output) if dependencies_output else "No previous context available."
)
return formatted_prompt
except Exception as e:
logger.error(f"Failed to generate prompt for {role}: {str(e)}")
raise
async def execute_flow(self, requirements: str) -> str:
"""Execute the AI Flow and build the project."""
try:
# Initialize flow with requirements
self.requirements = requirements
self.initialize_flow()
# Extract app name from requirements
app_name = requirements.split()[0].lower().replace(" ", "_")
# Execute agents in parallel where possible
paths = list(nx.all_simple_paths(self.flow_graph, AgentRole.ARCHITECT, AgentRole.DOCUMENTATION_WRITER))
results = await self._execute_paths(paths)
# Generate project structure and documentation
project_structure = generate_project_structure(app_name, self.contexts[AgentRole.ARCHITECT].artifacts)
documentation = generate_documentation(app_name, requirements, self.contexts[AgentRole.DOCUMENTATION_WRITER].artifacts)
return f"""
# {app_name.title()} - Generated Application
## Project Structure
```
{project_structure}
```
## Documentation
{documentation}
## Next Steps
1. Review the generated architecture and components
2. Set up the development environment
3. Implement the components following the provided structure
4. Run the test suite
5. Deploy using the provided configurations
## Support
For any issues or questions, please refer to the documentation or create an issue in the repository.
"""
except Exception as e:
logger.error(f"Failed to execute flow: {str(e)}")
raise
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
async def _execute_paths(self, paths: List[List[AgentRole]]) -> List[str]:
"""Execute all paths in the flow graph."""
try:
# Execute paths in parallel
tasks = []
for path in paths:
for role in path:
if self.contexts[role].state == FlowState.PENDING:
tasks.append(self._execute_agent(role))
self.contexts[role].state = FlowState.RUNNING
# Wait for all tasks to complete
results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results
for result in results:
if isinstance(result, Exception):
raise result
return results
except Exception as e:
logger.error(f"Failed to execute paths: {str(e)}")
raise
async def _execute_agent(self, role: AgentRole) -> str:
"""Execute a single agent's tasks with enhanced context."""
try:
# Generate prompt
prompt = self._generate_prompt(role)
# Execute agent's task
result = await self._execute_agent_task(role, prompt)
# Update context
self.contexts[role].state = FlowState.COMPLETED
self.contexts[role].artifacts["output"] = result
return result
except Exception as e:
logger.error(f"Failed to execute agent {role}: {str(e)}")
self.contexts[role].state = FlowState.FAILED
raise
async def _execute_agent_task(self, role: AgentRole, prompt: str) -> str:
"""Execute a specific agent's task with the given prompt."""
try:
# Get agent
agent = get_agent(role)
# Execute the agent's task
result = await asyncio.to_thread(agent.run, prompt)
# Process and return the result
return result
except Exception as e:
logger.error(f"Agent task execution failed for {role}: {str(e)}")
raise
# Update the multi_agent_workflow function to use AI Flows
async def multi_agent_workflow(requirements: str) -> str:
"""Execute a multi-agent workflow using AI Flows to generate a complex app."""
try:
# Create AI Flow instance
ai_flow = EnhancedAIFlow()
# Generate the app
result = await ai_flow.execute_flow(requirements)
return result
except Exception as e:
logger.error(f"Multi-agent workflow failed: {str(e)}")
raise
# Update the app_generator function to handle async execution
async def app_generator(requirements: str) -> Dict[str, str]:
"""Generate an app based on the provided requirements using AI Flows."""
try:
# Create AI Flow instance
ai_flow = EnhancedAIFlow()
# Generate the app
result = await ai_flow.execute_flow(requirements)
# Create downloadable output
download_path = ai_flow.output_manager.create_download("generated_app")
return {
"output": result,
"download_path": str(download_path) if download_path else None
}
except Exception as e:
logger.error(f"App generation failed: {str(e)}")
raise
async def stream_output(requirements, progress=gr.Progress()):
"""Stream the output during app generation."""
try:
# Initialize
stream_handler.update(" Starting app generation...", "Initializing")
yield "Starting...", None, " Starting app generation...", "Initializing"
# Update progress
phases = [
(" Analyzing requirements...", "Analyzing"),
(" Generating architecture...", "Designing"),
(" Creating project structure...", "Creating"),
(" Implementing features...", "Implementing"),
(" Finalizing...", "Finalizing")
]
for msg, status in progress.tqdm(phases):
stream_handler.update(msg, status)
yield None, None, "\n".join(stream_handler.output), status
await asyncio.sleep(1) # Non-blocking sleep
# Generate the app
stream_handler.update(" Running AI Flow system...", "Processing")
yield None, None, "\n".join(stream_handler.output), "Processing"
try:
# Run the app generator with a timeout
async with asyncio.timeout(60): # 60 second timeout
result = await app_generator(requirements)
# Update output with result
if result["output"]:
stream_handler.update("\n" + result["output"], "Completed")
yield result["output"], result["download_path"], "\n".join(stream_handler.output), "Completed"
else:
raise Exception("No output generated")
except asyncio.TimeoutError:
stream_handler.update("\nApp generation timed out after 60 seconds", "Failed")
yield None, None, "\n".join(stream_handler.output), "Failed"
raise
except Exception as e:
error_msg = f"\nError: {str(e)}"
stream_handler.update(error_msg, "Failed")
yield None, None, "\n".join(stream_handler.output), "Failed"
raise
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
class StreamHandler:
"""Handles streaming output for the Gradio interface."""
def __init__(self):
self.output = []
self.current_status = ""
def update(self, message: str, status: str = None):
"""Update the output stream."""
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] {message}"
self.output.append(formatted_message)
if status:
self.current_status = status
# Keep only the last 100 lines
if len(self.output) > 100:
self.output = self.output[-100:]
return "\n".join(self.output), self.current_status
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as ui:
stream_handler = StreamHandler()
gr.Markdown("# Autonomous App Generator with AI Flow")
gr.Markdown("""
## Instructions
1. Describe the app you want to build in detail
2. Include any specific requirements or features
3. Click 'Generate App' to start the process
4. Download your generated app from the provided link
### Example:
```
Create a personal task management application with:
- User authentication (email/password, Google OAuth)
- Task management (CRUD, priorities, due dates, reminders)
- Modern UI with dark/light theme
- Real-time updates using WebSocket
- PostgreSQL and Redis for storage
```
""")
with gr.Row():
with gr.Column(scale=4):
requirements_input = gr.Textbox(
label="App Requirements",
placeholder="Describe the app you want to build...",
lines=10
)
with gr.Row():
generate_button = gr.Button("Generate App", variant="primary")
cancel_button = gr.Button("Cancel", variant="stop")
status = gr.Textbox(
label="Status",
value="Ready",
interactive=False
)
with gr.Column(scale=6):
with gr.Tabs():
with gr.TabItem("Output"):
output = gr.Markdown(
label="Generated App Details",
value="Your app details will appear here..."
)
with gr.TabItem("Download"):
file_output = gr.File(
label="Download Generated App",
interactive=False
)
with gr.TabItem("Live Log"):
log_output = gr.Textbox(
label="Generation Logs",
value="Logs will appear here...",
lines=10,
max_lines=20,
interactive=False,
show_copy_button=True
)
async def stream_output(requirements, progress=gr.Progress()):
"""Stream the output during app generation."""
try:
# Initialize
stream_handler.update(" Starting app generation...", "Initializing")
yield "Starting...", None, " Starting app generation...", "Initializing"
# Update progress
phases = [
(" Analyzing requirements...", "Analyzing"),
(" Generating architecture...", "Designing"),
(" Creating project structure...", "Creating"),
(" Implementing features...", "Implementing"),
(" Finalizing...", "Finalizing")
]
for msg, status in progress.tqdm(phases):
stream_handler.update(msg, status)
yield None, None, "\n".join(stream_handler.output), status
await asyncio.sleep(1) # Non-blocking sleep
# Generate the app
stream_handler.update(" Running AI Flow system...", "Processing")
yield None, None, "\n".join(stream_handler.output), "Processing"
try:
# Run the app generator with a timeout
async with asyncio.timeout(60): # 60 second timeout
result = await app_generator(requirements)
# Update output with result
if result["output"]:
stream_handler.update("\n" + result["output"], "Completed")
yield result["output"], result["download_path"], "\n".join(stream_handler.output), "Completed"
else:
raise Exception("No output generated")
except asyncio.TimeoutError:
stream_handler.update("\nApp generation timed out after 60 seconds", "Failed")
yield None, None, "\n".join(stream_handler.output), "Failed"
raise
except Exception as e:
error_msg = f"\nError: {str(e)}"
stream_handler.update(error_msg, "Failed")
yield None, None, "\n".join(stream_handler.output), "Failed"
raise
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
def cancel_generation():
"""Cancel the current generation process."""
stream_handler.update(" Generation cancelled by user", "Cancelled")
return "Generation cancelled", None, "\n".join(stream_handler.output), "Cancelled"
generate_button.click(
stream_output,
inputs=[requirements_input],
outputs=[output, file_output, log_output, status],
show_progress=True
)
cancel_button.click(
cancel_generation,
outputs=[output, file_output, log_output, status]
)
# Run the Gradio app
if __name__ == "__main__":
try:
ui.launch(
share=True, # Enable sharing
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
logger.error(f"Failed to launch Gradio interface: {str(e)}") |