from typing import Dict, Any, List from loguru import logger from utils.llm_orchestrator import LLMOrchestrator class ReasoningAgent: def __init__(self, llm_api_key: str): """Initialize the Reasoning Agent.""" logger.info("Initializing ReasoningAgent") self.llm_orchestrator = LLMOrchestrator(llm_api_key) self.capabilities = [ "step_by_step_reasoning", "context_management", "agent_coordination", "result_aggregation" ] self.setup_logger() def setup_logger(self): """Configure logging for the agent.""" logger.add("logs/reasoning_agent.log", rotation="500 MB") async def perform_reasoning( self, goal: str, available_agents: List[Dict[str, Any]]) -> Dict[str, Any]: """Perform step-by-step reasoning to achieve a goal.""" logger.info(f"Performing reasoning for goal: {goal}") try: context = { "goal": goal, "available_agents": available_agents, "steps": [] } # Example of a simple reasoning process with 2 steps. # This can be made more sophisticated based on the specific needs. for step in range(2): prompt = self.generate_reasoning_prompt(context) response = await self.llm_orchestrator.generate_completion(prompt) logger.info(f"Reasoning step {step + 1}: {response}") # Placeholder for action execution based on reasoning action = self.extract_action(response) if action and action["agent"] != "reasoning_agent": # Here we simulate executing an action with another agent # In a real scenario, this would involve calling the # appropriate agent action_result = await self.execute_agent_action(action, context) context["steps"].append({ "step": step + 1, "prompt": prompt, "response": response, "action": action, "action_result": action_result }) else: context["steps"].append({ "step": step + 1, "prompt": prompt, "response": response, "action": action }) return { "status": "success", "reasoning_process": context["steps"], "result": "Reasoning process completed." # Placeholder for final result } except Exception as e: logger.error(f"Error during reasoning: {str(e)}") return { "status": "error", "message": str(e) } def generate_reasoning_prompt(self, context: Dict[str, Any]) -> str: """Generate a prompt for the LLM to guide the reasoning process.""" prompt = f""" Goal: {context['goal']} Available Agents: {', '.join([agent['name'] for agent in context['available_agents']])} Reasoning Steps: """ for step in context["steps"]: prompt += f"- Step {step['step']}: {step['response']}\n" if "action" in step and step["action"]: prompt += f" Action: {step['action']}\n" if "action_result" in step and step["action_result"]: prompt += f" Result: {step['action_result']}\n" prompt += "What is the next logical step to achieve the goal? Explain your reasoning." return prompt def extract_action(self, response: str) -> Dict[str, Any]: """Extract the next action to be taken based on the LLM's response.""" # Basic implementation: Assume the last line of the response contains # the action lines = response.strip().split("\n") last_line = lines[-1] if ":" in last_line: parts = last_line.split(":") agent = parts[0].strip() parameters = parts[1].strip() if len(parts) > 1 else "" return { "agent": agent, "parameters": parameters } else: return None async def execute_agent_action( self, action: Dict[str, Any], context: Dict[str, Any]) -> str: """Simulate executing an action with another agent.""" # This is a placeholder for actual agent execution # In a real scenario, this method would call the appropriate agent based on action["agent"] # and pass the necessary parameters from action["parameters"] # Find the agent in the available agents list agent_info = next( (agent for agent in context["available_agents"] if agent["name"] == action["agent"]), None) if agent_info: logger.info( f"Executing action with agent: {action['agent']} with parameters: {action['parameters']}") # Simulate an action result return f"Result of action with {action['agent']}: Success" else: logger.error(f"Agent {action['agent']} not found.") return "Error: Agent not found"