agenticAi / core /knowledge_management_layer.py
Cline
Initial commit
0af0a55
raw
history blame
9.81 kB
from typing import Dict, List, Any
import networkx as nx
from rdflib import Graph, Literal, RDF, URIRef
from loguru import logger
from utils.llm_orchestrator import LLMOrchestrator
import json
from datetime import datetime
class KnowledgeManagementLayer:
def __init__(self, llm_api_key: str):
"""Initialize the Knowledge Management Layer."""
self.llm_orchestrator = LLMOrchestrator(llm_api_key)
self.knowledge_graph = nx.DiGraph()
self.rdf_graph = Graph()
self.setup_logger()
def setup_logger(self):
"""Configure logging for the knowledge management layer."""
logger.add("logs/knowledge_management.log", rotation="500 MB")
async def update_knowledge_graph(
self, new_info: Dict[str, Any]) -> Dict[str, str]:
"""Update the knowledge graph with new information."""
logger.info("Updating knowledge graph with new information")
entities_added = 0
relations_added = 0
try:
# Process new information using LLM
processed_info = await self.process_information(new_info)
# Add nodes and edges to the graph
for entity in processed_info['entities']:
self.knowledge_graph.add_node(
entity['id'],
**entity['attributes']
)
entities_added += 1
for relation in processed_info['relations']:
self.knowledge_graph.add_edge(
relation['source'],
relation['target'],
**relation['attributes']
)
relations_added += 1
# Update RDF graph
await self.update_rdf_graph(processed_info)
logger.info(
f"Successfully updated knowledge graph: Added {entities_added} entities and {relations_added} relations")
return {
'status': 'success',
'message': f"Added {entities_added} entities and {relations_added} relations"
}
except Exception as e:
logger.error(f"Error updating knowledge graph: {str(e)}")
logger.error(
f"Processed {entities_added} entities and {relations_added} relations before error")
return {
'status': 'error',
'message': str(e)
}
async def process_information(
self, info: Dict[str, Any]) -> Dict[str, Any]:
"""Process raw information using LLM to extract entities and relations."""
logger.info("Processing information to extract entities and relations")
try:
# Generate prompt for entity extraction
entity_prompt = f"""
Extract entities and their attributes from the following information:
{json.dumps(info, indent=2)}
Return the entities in the following format:
- Entity ID
- Entity Type
- Attributes (key-value pairs)
"""
entity_response = await self.llm_orchestrator.generate_completion(entity_prompt)
entities = self.parse_llm_response(entity_response, 'entities')
logger.info(f"Extracted {len(entities)} entities")
# Generate prompt for relation extraction
relation_prompt = f"""
Extract relations between entities from the following information:
{json.dumps(info, indent=2)}
Entities found:
{json.dumps(entities, indent=2)}
Return the relations in the following format:
- Source Entity ID
- Target Entity ID
- Relation Type
- Attributes (key-value pairs)
"""
relation_response = await self.llm_orchestrator.generate_completion(relation_prompt)
relations = self.parse_llm_response(relation_response, 'relations')
logger.info(f"Extracted {len(relations)} relations")
return {
'entities': entities,
'relations': relations
}
except Exception as e:
logger.error(f"Error processing information: {str(e)}")
raise
async def update_rdf_graph(self, processed_info: Dict[str, Any]):
"""Update the RDF graph with processed information."""
try:
for entity in processed_info['entities']:
subject = URIRef(f"entity:{entity['id']}")
self.rdf_graph.add(
(subject, RDF.type, URIRef(f"type:{entity['type']}")))
for key, value in entity['attributes'].items():
self.rdf_graph.add(
(subject, URIRef(f"attribute:{key}"), Literal(value)))
for relation in processed_info['relations']:
subject = URIRef(f"entity:{relation['source']}")
obj = URIRef(f"entity:{relation['target']}")
predicate = URIRef(f"relation:{relation['type']}")
self.rdf_graph.add((subject, predicate, obj))
for key, value in relation['attributes'].items():
self.rdf_graph.add(
(predicate, URIRef(f"attribute:{key}"), Literal(value)))
except Exception as e:
logger.error(f"Error updating RDF graph: {str(e)}")
raise
async def query_knowledge(self, query: Dict[str, Any]) -> Dict[str, Any]:
"""Query the knowledge graph based on specific criteria."""
try:
# Generate SPARQL query using LLM
sparql_prompt = f"""
Generate a SPARQL query for the following search criteria:
{json.dumps(query, indent=2)}
"""
sparql_query = await self.llm_orchestrator.generate_completion(sparql_prompt)
# Execute query on RDF graph
results = self.rdf_graph.query(sparql_query)
# Process and format results
formatted_results = await self.format_query_results(results)
return {
'status': 'success',
'results': formatted_results
}
except Exception as e:
logger.error(f"Error querying knowledge graph: {str(e)}")
return {
'status': 'error',
'message': str(e)
}
async def generate_insights(
self, context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Generate insights from the knowledge graph."""
try:
# Extract relevant subgraph based on context
subgraph = self.extract_relevant_subgraph(context)
# Generate insights using LLM
insight_prompt = f"""
Generate insights from the following knowledge graph data:
Nodes: {len(subgraph.nodes)}
Edges: {len(subgraph.edges)}
Context: {json.dumps(context, indent=2)}
Graph Summary:
{self.summarize_subgraph(subgraph)}
"""
insights = await self.llm_orchestrator.generate_completion(insight_prompt)
return self.parse_llm_response(insights, 'insights')
except Exception as e:
logger.error(f"Error generating insights: {str(e)}")
raise
def extract_relevant_subgraph(self, context: Dict[str, Any]) -> nx.DiGraph:
"""Extract a relevant subgraph based on context."""
# Implementation would include logic to extract relevant portions of the graph
# based on the provided context
return self.knowledge_graph
def summarize_subgraph(self, subgraph: nx.DiGraph) -> str:
"""Generate a summary of the subgraph."""
summary = {
'node_types': {},
'edge_types': {},
'key_entities': []
}
# Count node types
for node in subgraph.nodes(data=True):
node_type = node[1].get('type', 'unknown')
summary['node_types'][node_type] = summary['node_types'].get(
node_type, 0) + 1
# Count edge types
for edge in subgraph.edges(data=True):
edge_type = edge[2].get('type', 'unknown')
summary['edge_types'][edge_type] = summary['edge_types'].get(
edge_type, 0) + 1
# Identify key entities (e.g., nodes with highest degree)
for node in sorted(subgraph.degree, key=lambda x: x[1], reverse=True)[
:5]:
summary['key_entities'].append({
'id': node[0],
'degree': node[1]
})
return json.dumps(summary, indent=2)
@staticmethod
def parse_llm_response(
response: str, response_type: str) -> List[Dict[str, Any]]:
"""Parse LLM response into structured data."""
# Implementation would include logic to parse the LLM's response
# into a structured format based on the response_type
return [] # Placeholder return
async def backup_knowledge(self, backup_path: str):
"""Backup the knowledge graph to a file."""
try:
timestamp = datetime.utcnow().strftime('%Y%m%d_%H%M%S')
# Backup NetworkX graph
nx.write_gpickle(
self.knowledge_graph,
f"{backup_path}/knowledge_graph_{timestamp}.gpickle")
# Backup RDF graph
self.rdf_graph.serialize(
f"{backup_path}/rdf_graph_{timestamp}.ttl",
format="turtle")
logger.info(
f"Knowledge graph backed up successfully at {timestamp}")
except Exception as e:
logger.error(f"Error backing up knowledge graph: {str(e)}")
raise