"""Local LLM integration for the reasoning system.""" import os from typing import Dict, Any, Optional, AsyncGenerator, Generator from datetime import datetime import logging from llama_cpp import Llama import huggingface_hub from .base import ReasoningStrategy from .model_manager import ModelManager, ModelType class LocalLLMStrategy(ReasoningStrategy): """Implements reasoning using local LLM.""" def __init__(self, config: Optional[Dict[str, Any]] = None): """Initialize the local LLM strategy.""" super().__init__() self.config = config or {} # Initialize model manager with model_dir from config model_dir = self.config.get('model_dir') self.model_manager = ModelManager(model_dir) # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) self.parallel_threshold = self.config.get('parallel_threshold', 3) self.learning_rate = self.config.get('learning_rate', 0.1) self.strategy_weights = self.config.get('strategy_weights', { "LOCAL_LLM": 0.8, "CHAIN_OF_THOUGHT": 0.6, "TREE_OF_THOUGHTS": 0.5, "META_LEARNING": 0.4 }) self.logger = logging.getLogger(__name__) async def initialize(self): """Initialize all models.""" await self.model_manager.initialize_all_models() async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: """Generate reasoning response using appropriate local LLM.""" try: # Determine best model for the task task_type = context.get('task_type', 'general') model_key = self.model_manager.get_best_model_for_task(task_type) # Get or initialize the model model = await self.model_manager.get_model(model_key) if not model: raise Exception(f"Failed to initialize {model_key} model") # Format prompt with context prompt = self._format_prompt(query, context) # Generate response response = model( prompt, max_tokens=1024 if model.n_ctx >= 4096 else 512, temperature=0.7, top_p=0.95, repeat_penalty=1.1, echo=False ) # Extract and structure the response result = self._parse_response(response['choices'][0]['text']) return { 'success': True, 'answer': result['answer'], 'reasoning': result['reasoning'], 'confidence': result['confidence'], 'timestamp': datetime.now(), 'metadata': { 'model': model_key, 'strategy': 'local_llm', 'context_length': len(prompt), 'response_length': len(response['choices'][0]['text']) } } except Exception as e: self.logger.error(f"Error in reasoning: {e}") return { 'success': False, 'error': str(e), 'timestamp': datetime.now() } def _format_prompt(self, query: str, context: Dict[str, Any]) -> str: """Format the prompt with query and context.""" # Include relevant context context_str = "\n".join([ f"{k}: {v}" for k, v in context.items() if k in ['objective', 'constraints', 'background'] ]) return f"""Let's solve this problem step by step. Context: {context_str} Question: {query} Let me break this down: 1.""" def _parse_response(self, text: str) -> Dict[str, Any]: """Parse the response into structured output.""" # Simple parsing for now lines = text.strip().split('\n') return { 'answer': lines[-1] if lines else '', 'reasoning': '\n'.join(lines[:-1]) if len(lines) > 1 else '', 'confidence': 0.8 # Default confidence }