""" Emergent Reasoning Module ------------------------ Implements emergent reasoning capabilities that arise from the interaction of multiple reasoning strategies and patterns. """ from typing import Dict, Any, List, Optional from .base import ReasoningStrategy from .meta_learning import MetaLearningStrategy from .chain_of_thought import ChainOfThoughtStrategy from .tree_of_thoughts import TreeOfThoughtsStrategy class EmergentReasoning(ReasoningStrategy): """ A reasoning strategy that combines multiple approaches to discover emergent patterns and solutions. """ def __init__(self, config: Optional[Dict[str, Any]] = None): """Initialize emergent reasoning with component strategies.""" super().__init__() self.config = config or {} # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) self.parallel_threshold = self.config.get('parallel_threshold', 3) self.learning_rate = self.config.get('learning_rate', 0.1) self.strategy_weights = self.config.get('strategy_weights', { "LOCAL_LLM": 0.8, "CHAIN_OF_THOUGHT": 0.6, "TREE_OF_THOUGHTS": 0.5, "META_LEARNING": 0.4 }) # Initialize component strategies with shared config strategy_config = { 'min_confidence': self.min_confidence, 'parallel_threshold': self.parallel_threshold, 'learning_rate': self.learning_rate, 'strategy_weights': self.strategy_weights } self.meta_learner = MetaLearningStrategy(strategy_config) self.chain_of_thought = ChainOfThoughtStrategy(strategy_config) self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config) # Configure weights for strategy combination self.weights = self.config.get('combination_weights', { 'meta': 0.4, 'chain': 0.3, 'tree': 0.3 }) async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: """ Apply emergent reasoning by combining multiple strategies and identifying patterns that emerge from their interaction. Args: query: The input query to reason about context: Additional context and parameters Returns: Dict containing reasoning results and confidence scores """ try: # Get results from each strategy meta_result = await self.meta_learner.reason(query, context) chain_result = await self.chain_of_thought.reason(query, context) tree_result = await self.tree_of_thoughts.reason(query, context) # Combine results with weighted averaging combined_answer = self._combine_results([ (meta_result.get('answer', ''), self.weights['meta']), (chain_result.get('answer', ''), self.weights['chain']), (tree_result.get('answer', ''), self.weights['tree']) ]) # Calculate overall confidence confidence = ( meta_result.get('confidence', 0) * self.weights['meta'] + chain_result.get('confidence', 0) * self.weights['chain'] + tree_result.get('confidence', 0) * self.weights['tree'] ) return { 'answer': combined_answer, 'confidence': confidence, 'reasoning_path': { 'meta': meta_result.get('reasoning_path'), 'chain': chain_result.get('reasoning_path'), 'tree': tree_result.get('reasoning_path') }, 'emergent_patterns': self._identify_patterns([ meta_result, chain_result, tree_result ]) } except Exception as e: return { 'error': f"Emergent reasoning failed: {str(e)}", 'confidence': 0.0 } def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str: """Combine multiple reasoning results with weights.""" if not weighted_results: return "" # For now, use the highest weighted result return max(weighted_results, key=lambda x: x[1])[0] def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]: """Identify common patterns across different reasoning strategies.""" patterns = [] # Extract common themes or conclusions answers = [r.get('answer', '') for r in results if r.get('answer')] if len(set(answers)) == 1: patterns.append("All strategies reached the same conclusion") elif len(set(answers)) < len(answers): patterns.append("Some strategies converged on similar conclusions") # Look for common confidence patterns confidences = [r.get('confidence', 0) for r in results] avg_confidence = sum(confidences) / len(confidences) if confidences else 0 if avg_confidence > 0.8: patterns.append("High confidence across all strategies") elif avg_confidence < 0.3: patterns.append("Low confidence across strategies") return patterns