"""Analogical reasoning implementation with advanced pattern matching and transfer learning.""" import logging from typing import Dict, Any, List, Optional, Set, Tuple, Callable import json from dataclasses import dataclass, field from enum import Enum from datetime import datetime import numpy as np from collections import defaultdict from .base import ReasoningStrategy class AnalogicalLevel(Enum): """Levels of analogical similarity.""" SURFACE = "surface" STRUCTURAL = "structural" SEMANTIC = "semantic" FUNCTIONAL = "functional" CAUSAL = "causal" ABSTRACT = "abstract" class MappingType(Enum): """Types of analogical mappings.""" DIRECT = "direct" TRANSFORMED = "transformed" COMPOSITE = "composite" ABSTRACT = "abstract" METAPHORICAL = "metaphorical" HYBRID = "hybrid" @dataclass class AnalogicalPattern: """Represents a pattern for analogical matching.""" id: str level: AnalogicalLevel features: Dict[str, Any] relations: List[Tuple[str, str, str]] # (entity1, relation, entity2) constraints: List[str] metadata: Dict[str, Any] = field(default_factory=dict) @dataclass class AnalogicalMapping: """Represents a mapping between source and target domains.""" id: str type: MappingType source_elements: Dict[str, Any] target_elements: Dict[str, Any] correspondences: List[Tuple[str, str, float]] # (source, target, strength) transformations: List[Dict[str, Any]] confidence: float metadata: Dict[str, Any] = field(default_factory=dict) @dataclass class AnalogicalSolution: """Represents a solution derived through analogical reasoning.""" id: str source_analogy: str mapping: AnalogicalMapping adaptation: Dict[str, Any] inference: Dict[str, Any] confidence: float validation: Dict[str, Any] metadata: Dict[str, Any] = field(default_factory=dict) class AnalogicalReasoning(ReasoningStrategy): """ Advanced Analogical Reasoning implementation with: - Multi-level pattern matching - Sophisticated similarity metrics - Transfer learning capabilities - Dynamic adaptation mechanisms - Quality assessment - Learning from experience """ def __init__(self, config: Optional[Dict[str, Any]] = None): """Initialize analogical reasoning.""" super().__init__() self.config = config or {} # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) self.parallel_threshold = self.config.get('parallel_threshold', 3) self.learning_rate = self.config.get('learning_rate', 0.1) self.strategy_weights = self.config.get('strategy_weights', { "LOCAL_LLM": 0.8, "CHAIN_OF_THOUGHT": 0.6, "TREE_OF_THOUGHTS": 0.5, "META_LEARNING": 0.4 }) # Analogical reasoning specific parameters self.min_similarity = self.config.get('min_similarity', 0.6) self.max_candidates = self.config.get('max_candidates', 5) self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7) # Knowledge base self.patterns: Dict[str, AnalogicalPattern] = {} self.mappings: Dict[str, AnalogicalMapping] = {} self.solutions: Dict[str, AnalogicalSolution] = {} # Learning components self.pattern_weights: Dict[str, float] = defaultdict(float) self.success_history: List[Dict[str, Any]] = [] self.adaptation_history: List[Dict[str, Any]] = [] async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: """Main reasoning method implementing analogical reasoning.""" try: # Extract patterns from query patterns = await self._extract_patterns(query, context) # Find analogical matches matches = await self._find_matches(patterns, context) # Create and evaluate mappings mappings = await self._create_mappings(matches, context) # Generate and adapt solutions solutions = await self._generate_solutions(mappings, context) # Select best solution best_solution = await self._select_best_solution(solutions, context) # Learn from experience self._update_knowledge(patterns, mappings, best_solution) return { "success": True, "answer": best_solution.inference["conclusion"], "confidence": best_solution.confidence, "analogy": { "source": best_solution.source_analogy, "mapping": self._mapping_to_dict(best_solution.mapping), "adaptation": best_solution.adaptation }, "reasoning_trace": best_solution.metadata.get("reasoning_trace", []), "meta_insights": best_solution.metadata.get("meta_insights", []) } except Exception as e: logging.error(f"Error in analogical reasoning: {str(e)}") return {"success": False, "error": str(e)} async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]: """Extract patterns from query for analogical matching.""" prompt = f""" Extract analogical patterns from query: Query: {query} Context: {json.dumps(context)} For each pattern level: 1. Surface features 2. Structural relations 3. Semantic concepts 4. Functional roles 5. Causal relationships 6. Abstract principles Format as: [P1] Level: ... Features: ... Relations: ... Constraints: ... [P2] ... """ response = await context["groq_api"].predict(prompt) return self._parse_patterns(response["answer"]) async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Find matching patterns in knowledge base.""" prompt = f""" Find analogical matches: Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])} Context: {json.dumps(context)} For each match provide: 1. Source domain 2. Similarity assessment 3. Key correspondences 4. Transfer potential Format as: [M1] Source: ... Similarity: ... Correspondences: ... Transfer: ... [M2] ... """ response = await context["groq_api"].predict(prompt) return self._parse_matches(response["answer"]) async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]: """Create mappings between source and target domains.""" prompt = f""" Create analogical mappings: Matches: {json.dumps(matches)} Context: {json.dumps(context)} For each mapping specify: 1. [Type]: {" | ".join([t.value for t in MappingType])} 2. [Elements]: Source and target elements 3. [Correspondences]: Element mappings 4. [Transformations]: Required adaptations 5. [Confidence]: Mapping strength Format as: [Map1] Type: ... Elements: ... Correspondences: ... Transformations: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) return self._parse_mappings(response["answer"]) async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]: """Generate solutions through analogical transfer.""" prompt = f""" Generate analogical solutions: Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])} Context: {json.dumps(context)} For each solution provide: 1. Analogical inference 2. Required adaptations 3. Validation criteria 4. Confidence assessment 5. Reasoning trace Format as: [S1] Inference: ... Adaptation: ... Validation: ... Confidence: ... Trace: ... """ response = await context["groq_api"].predict(prompt) return self._parse_solutions(response["answer"], mappings) async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution: """Select the best solution based on multiple criteria.""" prompt = f""" Evaluate and select best solution: Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])} Context: {json.dumps(context)} Evaluate based on: 1. Inference quality 2. Adaptation feasibility 3. Validation strength 4. Overall confidence Format as: [Evaluation] Rankings: ... Rationale: ... Selection: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) selection = self._parse_selection(response["answer"]) # Find selected solution selected = max(solutions, key=lambda s: s.confidence) for solution in solutions: if solution.id == selection.get("selected_id"): selected = solution break return selected def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution): """Update knowledge base with new patterns and successful mappings.""" # Update patterns for pattern in patterns: if pattern.id not in self.patterns: self.patterns[pattern.id] = pattern self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence # Update mappings if solution.mapping.id not in self.mappings: self.mappings[solution.mapping.id] = solution.mapping # Record solution self.solutions[solution.id] = solution # Update history self.success_history.append({ "timestamp": datetime.now().isoformat(), "solution_id": solution.id, "confidence": solution.confidence, "patterns": [p.id for p in patterns], "mapping_type": solution.mapping.type.value }) # Update adaptation history self.adaptation_history.append({ "timestamp": datetime.now().isoformat(), "solution_id": solution.id, "adaptations": solution.adaptation, "success": solution.confidence >= self.adaptation_threshold }) def _parse_patterns(self, response: str) -> List[AnalogicalPattern]: """Parse patterns from response.""" patterns = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[P'): if current: patterns.append(current) current = None elif line.startswith('Level:'): level_str = line[6:].strip().lower() try: level = AnalogicalLevel(level_str) current = AnalogicalPattern( id=f"pattern_{len(patterns)}", level=level, features={}, relations=[], constraints=[], metadata={} ) except ValueError: logging.warning(f"Invalid analogical level: {level_str}") elif current: if line.startswith('Features:'): try: current.features = json.loads(line[9:].strip()) except: current.features = {"raw": line[9:].strip()} elif line.startswith('Relations:'): relations = [r.strip() for r in line[10:].split(',')] current.relations = [(r.split()[0], r.split()[1], r.split()[2]) for r in relations if len(r.split()) >= 3] elif line.startswith('Constraints:'): current.constraints = [c.strip() for c in line[12:].split(',')] if current: patterns.append(current) return patterns def _parse_matches(self, response: str) -> List[Dict[str, Any]]: """Parse matches from response.""" matches = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[M'): if current: matches.append(current) current = { "source": "", "similarity": 0.0, "correspondences": [], "transfer": [] } elif current: if line.startswith('Source:'): current["source"] = line[7:].strip() elif line.startswith('Similarity:'): try: current["similarity"] = float(line[11:].strip()) except: pass elif line.startswith('Correspondences:'): current["correspondences"] = [c.strip() for c in line[16:].split(',')] elif line.startswith('Transfer:'): current["transfer"] = [t.strip() for t in line[9:].split(',')] if current: matches.append(current) return matches def _parse_mappings(self, response: str) -> List[AnalogicalMapping]: """Parse mappings from response.""" mappings = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[Map'): if current: mappings.append(current) current = None elif line.startswith('Type:'): type_str = line[5:].strip().lower() try: mapping_type = MappingType(type_str) current = AnalogicalMapping( id=f"mapping_{len(mappings)}", type=mapping_type, source_elements={}, target_elements={}, correspondences=[], transformations=[], confidence=0.0, metadata={} ) except ValueError: logging.warning(f"Invalid mapping type: {type_str}") elif current: if line.startswith('Elements:'): try: elements = json.loads(line[9:].strip()) current.source_elements = elements.get("source", {}) current.target_elements = elements.get("target", {}) except: pass elif line.startswith('Correspondences:'): pairs = [c.strip() for c in line[16:].split(',')] for pair in pairs: parts = pair.split(':') if len(parts) >= 2: source = parts[0].strip() target = parts[1].strip() strength = float(parts[2]) if len(parts) > 2 else 1.0 current.correspondences.append((source, target, strength)) elif line.startswith('Transformations:'): try: current.transformations = json.loads(line[16:].strip()) except: current.transformations = [{"raw": line[16:].strip()}] elif line.startswith('Confidence:'): try: current.confidence = float(line[11:].strip()) except: pass if current: mappings.append(current) return mappings def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]: """Parse solutions from response.""" solutions = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current: solutions.append(current) current = None mapping_idx = len(solutions) if mapping_idx < len(mappings): current = AnalogicalSolution( id=f"solution_{len(solutions)}", source_analogy="", mapping=mappings[mapping_idx], adaptation={}, inference={}, confidence=0.0, validation={}, metadata={} ) elif current: if line.startswith('Inference:'): try: current.inference = json.loads(line[10:].strip()) except: current.inference = {"conclusion": line[10:].strip()} elif line.startswith('Adaptation:'): try: current.adaptation = json.loads(line[11:].strip()) except: current.adaptation = {"steps": [line[11:].strip()]} elif line.startswith('Validation:'): try: current.validation = json.loads(line[11:].strip()) except: current.validation = {"criteria": [line[11:].strip()]} elif line.startswith('Confidence:'): try: current.confidence = float(line[11:].strip()) except: pass elif line.startswith('Trace:'): current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')] if current: solutions.append(current) return solutions def _parse_selection(self, response: str) -> Dict[str, Any]: """Parse solution selection from response.""" selection = { "selected_id": None, "confidence": 0.0, "rationale": [] } for line in response.split('\n'): line = line.strip() if line.startswith('Selection:'): selection["selected_id"] = line[10:].strip() elif line.startswith('Confidence:'): try: selection["confidence"] = float(line[11:].strip()) except: pass elif line.startswith('Rationale:'): selection["rationale"] = [r.strip() for r in line[10:].split(',')] return selection def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]: """Convert pattern to dictionary for serialization.""" return { "id": pattern.id, "level": pattern.level.value, "features": pattern.features, "relations": pattern.relations, "constraints": pattern.constraints, "metadata": pattern.metadata } def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]: """Convert mapping to dictionary for serialization.""" return { "id": mapping.id, "type": mapping.type.value, "source_elements": mapping.source_elements, "target_elements": mapping.target_elements, "correspondences": mapping.correspondences, "transformations": mapping.transformations, "confidence": mapping.confidence, "metadata": mapping.metadata } def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]: """Convert solution to dictionary for serialization.""" return { "id": solution.id, "source_analogy": solution.source_analogy, "mapping": self._mapping_to_dict(solution.mapping), "adaptation": solution.adaptation, "inference": solution.inference, "confidence": solution.confidence, "validation": solution.validation, "metadata": solution.metadata } def get_pattern_statistics(self) -> Dict[str, Any]: """Get statistics about pattern usage and effectiveness.""" return { "total_patterns": len(self.patterns), "level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}), "average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0, "pattern_weights": dict(self.pattern_weights) } def get_mapping_statistics(self) -> Dict[str, Any]: """Get statistics about mapping effectiveness.""" return { "total_mappings": len(self.mappings), "type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}), "average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0, "transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()}) } def get_solution_statistics(self) -> Dict[str, Any]: """Get statistics about solution quality.""" return { "total_solutions": len(self.solutions), "average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0, "adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0 } def clear_knowledge_base(self): """Clear the knowledge base.""" self.patterns.clear() self.mappings.clear() self.solutions.clear() self.pattern_weights.clear() self.success_history.clear() self.adaptation_history.clear()