title: Advanced Agentic System emoji: 🤖 colorFrom: indigo colorTo: purple sdk: gradio sdk_version: latest app_file: startup.sh pinned: true license: apache-2.0 duplicated_from: nananie143/agentic-system python_version: "3.10" cuda: "11.8" hardware: t4-medium # System requirements compute: instance: t4-medium storage: large # Environment setup env: - MODEL_BACKEND=groq - GROQ_API_KEY # This will be loaded from repository secrets - ENABLE_LOCAL_FALLBACK=true - CACHE_MODELS=false - GRADIO_SERVER_PORT=7860 - GRADIO_SERVER_NAME=0.0.0.0 - MAX_PARALLEL_REQUESTS=10 - REQUEST_TIMEOUT=30 - BATCH_SIZE=4 - GRADIO_ANALYTICS_ENABLED=false - PYTHONUNBUFFERED=1 - SPACE_CACHE_DIR=/data/models - TORCH_CUDA_ARCH_LIST="7.5" - CUDA_VISIBLE_DEVICES=0 # Model configurations models: - rrbale/pruned-qwen-moe/model-Q6_K.gguf - YorkieOH10/deepseek-coder-6.7B-kexer-Q8_0-GGUF/model.gguf - Nidum-Llama-3.2-3B-Uncensored-GGUF/model-Q6_K.gguf - deepseek-ai/JanusFlow-1.3B/model.gguf - prithivMLmods/QwQ-4B-Instruct/model.gguf - gpt-omni/mini-omni2/mini-omni2.gguf # Dependencies dependencies: python: - "gradio>=4.44.1" - "groq>=0.4.1" - "fastapi>=0.68.0" - "uvicorn>=0.15.0" - "pydantic>=2.0.0" - "python-dotenv>=0.19.0" - "aiohttp>=3.8.0" - "asyncio>=3.4.3" - "numpy>=1.24.0" - "pandas>=2.1.0" - "scikit-learn>=1.3.2" - "plotly>=5.18.0" - "networkx>=3.2.1" - "llama-cpp-python>=0.2.23" # Added for local LLM support system: - git-lfs - cmake - ninja-build # For faster builds - build-essential # Required for compilation - cuda-toolkit-11-8 - nvidia-cuda-toolkit - libcudnn8 # Inference settings inference: model_backend: groq models: - name: mixtral-8x7b-32768 provider: groq max_tokens: 32768 - name: llama2-70b-4096 provider: groq max_tokens: 4096 fallback: enabled: true provider: huggingface model: mistral-7b-instruct-v0.2 # Resource limits resources: memory: 16 cpu: 4 gpu: 1 gpu_memory: 16 disk: 50 # Monitoring monitoring: enable_logging: true log_level: INFO metrics_enabled: true # Build configuration build: system_packages: - cmake - build-essential - cuda-toolkit-11-8 - nvidia-cuda-toolkit - libcudnn8 python_packages: - --upgrade pip - -r requirements.txt - torch --index-url https://download.pytorch.org/whl/cu118 - llama-cpp-python --no-cache-dir # Runtime configuration runtime: build: cuda: "11.8" python: "3.10" env: - PYTHONUNBUFFERED=1 - GRADIO_SERVER_NAME=0.0.0.0 - TORCH_CUDA_ARCH_LIST="7.5" - CUDA_VISIBLE_DEVICES=0 - GRADIO_ANALYTICS_ENABLED=false