Spaces:
Runtime error
Runtime error
"""Advanced neurosymbolic reasoning combining neural and symbolic approaches.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple, AsyncGenerator, Generator | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class NeuralFeature: | |
"""Neural features extracted from data.""" | |
name: str | |
values: np.ndarray | |
importance: float | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class SymbolicRule: | |
"""Symbolic rule with conditions and confidence.""" | |
name: str | |
conditions: List[str] | |
conclusion: str | |
confidence: float | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class NeurosymbolicStrategy(ReasoningStrategy): | |
""" | |
Advanced neurosymbolic reasoning that: | |
1. Extracts neural features | |
2. Generates symbolic rules | |
3. Combines approaches | |
4. Handles uncertainty | |
5. Provides interpretable results | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize neurosymbolic reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Neurosymbolic specific parameters | |
self.feature_threshold = self.config.get('feature_threshold', 0.1) | |
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7) | |
self.max_rules = self.config.get('max_rules', 10) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Apply neurosymbolic reasoning to combine neural and symbolic approaches. | |
Args: | |
query: The input query to reason about | |
context: Additional context and parameters | |
Returns: | |
Dict containing reasoning results and confidence scores | |
""" | |
try: | |
# Extract neural features | |
features = await self._extract_features(query, context) | |
# Generate symbolic rules | |
rules = await self._generate_rules(features, context) | |
# Combine approaches | |
combined = await self._combine_approaches(features, rules, context) | |
# Generate analysis | |
analysis = await self._generate_analysis(combined, context) | |
return { | |
'answer': self._format_analysis(analysis), | |
'confidence': self._calculate_confidence(combined), | |
'features': features, | |
'rules': rules, | |
'combined': combined, | |
'analysis': analysis | |
} | |
except Exception as e: | |
logging.error(f"Neurosymbolic reasoning failed: {str(e)}") | |
return { | |
'error': f"Neurosymbolic reasoning failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
async def _extract_features( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> List[NeuralFeature]: | |
"""Extract neural features from input.""" | |
features = [] | |
# Extract key terms | |
terms = query.lower().split() | |
# Process each term | |
for term in terms: | |
# Simple feature extraction for now | |
values = np.random.randn(10) # Placeholder for real feature extraction | |
importance = np.abs(values).mean() | |
if importance > self.feature_threshold: | |
features.append(NeuralFeature( | |
name=term, | |
values=values, | |
importance=importance, | |
metadata={'source': 'term_extraction'} | |
)) | |
# Sort by importance | |
features.sort(key=lambda x: x.importance, reverse=True) | |
return features | |
async def _generate_rules( | |
self, | |
features: List[NeuralFeature], | |
context: Dict[str, Any] | |
) -> List[SymbolicRule]: | |
"""Generate symbolic rules from features.""" | |
rules = [] | |
# Process feature combinations | |
for i, feature1 in enumerate(features): | |
for j, feature2 in enumerate(features[i+1:], i+1): | |
# Calculate correlation | |
correlation = np.corrcoef(feature1.values, feature2.values)[0, 1] | |
if abs(correlation) > self.rule_confidence_threshold: | |
# Create rule based on correlation | |
if correlation > 0: | |
condition = f"{feature1.name} AND {feature2.name}" | |
conclusion = "positively_correlated" | |
else: | |
condition = f"{feature1.name} XOR {feature2.name}" | |
conclusion = "negatively_correlated" | |
rules.append(SymbolicRule( | |
name=f"rule_{len(rules)}", | |
conditions=[condition], | |
conclusion=conclusion, | |
confidence=abs(correlation), | |
metadata={ | |
'features': [feature1.name, feature2.name], | |
'correlation': correlation | |
} | |
)) | |
if len(rules) >= self.max_rules: | |
break | |
if len(rules) >= self.max_rules: | |
break | |
return rules | |
async def _combine_approaches( | |
self, | |
features: List[NeuralFeature], | |
rules: List[SymbolicRule], | |
context: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Combine neural and symbolic approaches.""" | |
combined = { | |
'neural_weights': {}, | |
'symbolic_weights': {}, | |
'combined_scores': {} | |
} | |
# Calculate neural weights | |
total_importance = sum(f.importance for f in features) | |
if total_importance > 0: | |
combined['neural_weights'] = { | |
f.name: f.importance / total_importance | |
for f in features | |
} | |
# Calculate symbolic weights | |
total_confidence = sum(r.confidence for r in rules) | |
if total_confidence > 0: | |
combined['symbolic_weights'] = { | |
r.name: r.confidence / total_confidence | |
for r in rules | |
} | |
# Combine scores | |
all_elements = set( | |
list(combined['neural_weights'].keys()) + | |
list(combined['symbolic_weights'].keys()) | |
) | |
for element in all_elements: | |
neural_score = combined['neural_weights'].get(element, 0) | |
symbolic_score = combined['symbolic_weights'].get(element, 0) | |
# Simple weighted average | |
combined['combined_scores'][element] = ( | |
neural_score * 0.6 + # Favor neural slightly | |
symbolic_score * 0.4 | |
) | |
return combined | |
async def _generate_analysis( | |
self, | |
combined: Dict[str, Any], | |
context: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Generate neurosymbolic analysis.""" | |
# Sort elements by combined score | |
ranked_elements = sorted( | |
combined['combined_scores'].items(), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
# Calculate statistics | |
scores = list(combined['combined_scores'].values()) | |
mean = np.mean(scores) if scores else 0 | |
std = np.std(scores) if scores else 0 | |
# Calculate entropy | |
entropy = -sum( | |
s * np.log2(s) if s > 0 else 0 | |
for s in combined['combined_scores'].values() | |
) | |
return { | |
'top_element': ranked_elements[0][0] if ranked_elements else '', | |
'score': ranked_elements[0][1] if ranked_elements else 0, | |
'alternatives': [ | |
{'name': name, 'score': score} | |
for name, score in ranked_elements[1:] | |
], | |
'statistics': { | |
'mean': mean, | |
'std': std, | |
'entropy': entropy | |
} | |
} | |
def _format_analysis(self, analysis: Dict[str, Any]) -> str: | |
"""Format analysis into readable text.""" | |
sections = [] | |
# Top element | |
if analysis['top_element']: | |
sections.append( | |
f"Most significant element: {analysis['top_element']} " | |
f"(score: {analysis['score']:.2%})" | |
) | |
# Alternative elements | |
if analysis['alternatives']: | |
sections.append("\nAlternative elements:") | |
for alt in analysis['alternatives']: | |
sections.append( | |
f"- {alt['name']}: {alt['score']:.2%}" | |
) | |
# Statistics | |
stats = analysis['statistics'] | |
sections.append("\nAnalysis statistics:") | |
sections.append(f"- Mean score: {stats['mean']:.2%}") | |
sections.append(f"- Standard deviation: {stats['std']:.2%}") | |
sections.append(f"- Information entropy: {stats['entropy']:.2f} bits") | |
return "\n".join(sections) | |
def _calculate_confidence(self, combined: Dict[str, Any]) -> float: | |
"""Calculate overall confidence score.""" | |
if not combined['combined_scores']: | |
return 0.0 | |
# Base confidence | |
confidence = 0.5 | |
# Get scores | |
scores = list(combined['combined_scores'].values()) | |
# Strong leading score increases confidence | |
max_score = max(scores) | |
if max_score > 0.8: | |
confidence += 0.3 | |
elif max_score > 0.6: | |
confidence += 0.2 | |
elif max_score > 0.4: | |
confidence += 0.1 | |
# Low entropy (clear distinction) increases confidence | |
entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores) | |
max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy | |
if entropy < 0.3 * max_entropy: | |
confidence += 0.2 | |
elif entropy < 0.6 * max_entropy: | |
confidence += 0.1 | |
return min(confidence, 1.0) | |