agentic-system / reasoning /analogical.py
Cascade Bot
fix: standardize strategy class names
05c0fea
"""Analogical reasoning strategy implementation."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy, StrategyResult
class AnalogicalLevel(Enum):
"""Levels of analogical similarity."""
SURFACE = "surface"
STRUCTURAL = "structural"
SEMANTIC = "semantic"
FUNCTIONAL = "functional"
CAUSAL = "causal"
ABSTRACT = "abstract"
class MappingType(Enum):
"""Types of analogical mappings."""
DIRECT = "direct"
TRANSFORMED = "transformed"
COMPOSITE = "composite"
ABSTRACT = "abstract"
METAPHORICAL = "metaphorical"
HYBRID = "hybrid"
@dataclass
class AnalogicalPattern:
"""Represents a pattern for analogical matching."""
id: str
level: AnalogicalLevel
features: Dict[str, Any]
relations: List[Tuple[str, str, str]] # (entity1, relation, entity2)
constraints: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class AnalogicalMapping:
"""Represents a mapping between source and target domains."""
id: str
type: MappingType
source_elements: Dict[str, Any]
target_elements: Dict[str, Any]
correspondences: List[Tuple[str, str, float]] # (source, target, strength)
transformations: List[Dict[str, Any]]
confidence: float
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
@dataclass
class AnalogicalSolution:
"""Represents a solution derived through analogical reasoning."""
id: str
source_analogy: str
mapping: AnalogicalMapping
adaptation: Dict[str, Any]
inference: Dict[str, Any]
confidence: float
validation: Dict[str, Any]
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
class AnalogicalStrategy(ReasoningStrategy):
"""Advanced analogical reasoning that:
1. Identifies relevant analogies
2. Maps relationships
3. Transfers knowledge
4. Validates mappings
5. Refines analogies
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize analogical reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.min_similarity = self.config.get('min_similarity', 0.6)
self.max_candidates = self.config.get('max_candidates', 5)
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
# Knowledge base
self.patterns: Dict[str, AnalogicalPattern] = {}
self.mappings: Dict[str, AnalogicalMapping] = {}
self.solutions: Dict[str, AnalogicalSolution] = {}
# Performance metrics
self.performance_metrics = {
'pattern_matches': 0,
'successful_mappings': 0,
'failed_mappings': 0,
'adaptation_success_rate': 0.0,
'avg_solution_confidence': 0.0,
'pattern_distribution': defaultdict(int),
'mapping_distribution': defaultdict(int),
'total_patterns_used': 0,
'total_mappings_created': 0,
'total_solutions_generated': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply analogical reasoning to analyze the query.
Args:
query: The query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning output and metadata
"""
try:
# Extract patterns
patterns = await self._extract_patterns(query, context)
self.performance_metrics['total_patterns_used'] = len(patterns)
# Find matches
matches = await self._find_matches(patterns, context)
self.performance_metrics['pattern_matches'] = len(matches)
# Create mappings
mappings = await self._create_mappings(matches, context)
self.performance_metrics['total_mappings_created'] = len(mappings)
# Generate solutions
solutions = await self._generate_solutions(mappings, context)
self.performance_metrics['total_solutions_generated'] = len(solutions)
# Select best solution
best_solution = await self._select_best_solution(solutions, context)
if best_solution:
# Update knowledge base
self._update_knowledge(patterns, mappings, best_solution)
# Update metrics
self._update_metrics(patterns, mappings, solutions, best_solution)
# Build reasoning trace
reasoning_trace = self._build_reasoning_trace(
patterns, matches, mappings, solutions, best_solution
)
return StrategyResult(
strategy_type="analogical",
success=True,
answer=best_solution.inference.get('conclusion'),
confidence=best_solution.confidence,
reasoning_trace=reasoning_trace,
metadata={
'source_analogy': best_solution.source_analogy,
'mapping_type': best_solution.mapping.type.value,
'adaptation_details': best_solution.adaptation,
'validation_results': best_solution.validation
},
performance_metrics=self.performance_metrics
)
return StrategyResult(
strategy_type="analogical",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
'step': 'error',
'error': 'No valid solution found',
'timestamp': datetime.now().isoformat()
}],
metadata={'error': 'No valid solution found'},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Analogical reasoning error: {str(e)}")
return StrategyResult(
strategy_type="analogical",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
'step': 'error',
'error': str(e),
'timestamp': datetime.now().isoformat()
}],
metadata={'error': str(e)},
performance_metrics=self.performance_metrics
)
async def _extract_patterns(
self,
query: str,
context: Dict[str, Any]
) -> List[AnalogicalPattern]:
"""Extract patterns from query for analogical matching."""
# This is a placeholder implementation
# In practice, this would use more sophisticated pattern extraction
pattern = AnalogicalPattern(
id=f"pattern_{len(self.patterns)}",
level=AnalogicalLevel.SURFACE,
features={'query': query},
relations=[],
constraints=[],
metadata={'context': context}
)
return [pattern]
async def _find_matches(
self,
patterns: List[AnalogicalPattern],
context: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Find matching patterns in knowledge base."""
matches = []
for pattern in patterns:
# Example matching logic
similarity = np.random.random() # Placeholder
if similarity >= self.min_similarity:
matches.append({
'pattern': pattern,
'similarity': similarity,
'features': pattern.features
})
return sorted(
matches,
key=lambda x: x['similarity'],
reverse=True
)[:self.max_candidates]
async def _create_mappings(
self,
matches: List[Dict[str, Any]],
context: Dict[str, Any]
) -> List[AnalogicalMapping]:
"""Create mappings between source and target domains."""
mappings = []
for match in matches:
mapping = AnalogicalMapping(
id=f"mapping_{len(self.mappings)}",
type=MappingType.DIRECT,
source_elements=match['features'],
target_elements=context,
correspondences=[],
transformations=[],
confidence=match['similarity']
)
mappings.append(mapping)
return mappings
async def _generate_solutions(
self,
mappings: List[AnalogicalMapping],
context: Dict[str, Any]
) -> List[AnalogicalSolution]:
"""Generate solutions through analogical transfer."""
solutions = []
for mapping in mappings:
if mapping.confidence >= self.adaptation_threshold:
solution = AnalogicalSolution(
id=f"solution_{len(self.solutions)}",
source_analogy=str(mapping.source_elements),
mapping=mapping,
adaptation={'applied_rules': []},
inference={'conclusion': 'Analogical solution'},
confidence=mapping.confidence,
validation={'checks_passed': True},
metadata={'context': context}
)
solutions.append(solution)
return solutions
async def _select_best_solution(
self,
solutions: List[AnalogicalSolution],
context: Dict[str, Any]
) -> Optional[AnalogicalSolution]:
"""Select the best solution based on multiple criteria."""
if not solutions:
return None
# Sort by confidence and return best
return max(solutions, key=lambda x: x.confidence)
def _update_knowledge(
self,
patterns: List[AnalogicalPattern],
mappings: List[AnalogicalMapping],
solution: AnalogicalSolution
) -> None:
"""Update knowledge base with new patterns and successful mappings."""
# Store new patterns
for pattern in patterns:
self.patterns[pattern.id] = pattern
# Store successful mappings
for mapping in mappings:
if mapping.confidence >= self.min_confidence:
self.mappings[mapping.id] = mapping
# Store successful solution
self.solutions[solution.id] = solution
def _update_metrics(
self,
patterns: List[AnalogicalPattern],
mappings: List[AnalogicalMapping],
solutions: List[AnalogicalSolution],
best_solution: AnalogicalSolution
) -> None:
"""Update performance metrics."""
# Update pattern distribution
for pattern in patterns:
self.performance_metrics['pattern_distribution'][pattern.level] += 1
# Update mapping distribution
for mapping in mappings:
self.performance_metrics['mapping_distribution'][mapping.type] += 1
if mapping.confidence >= self.min_confidence:
self.performance_metrics['successful_mappings'] += 1
else:
self.performance_metrics['failed_mappings'] += 1
# Calculate adaptation success rate
total_adaptations = len(solutions)
successful_adaptations = sum(
1 for s in solutions
if s.confidence >= self.adaptation_threshold
)
self.performance_metrics['adaptation_success_rate'] = (
successful_adaptations / total_adaptations
if total_adaptations > 0 else 0.0
)
# Calculate average solution confidence
self.performance_metrics['avg_solution_confidence'] = (
sum(s.confidence for s in solutions) / len(solutions)
if solutions else 0.0
)
def _build_reasoning_trace(
self,
patterns: List[AnalogicalPattern],
matches: List[Dict[str, Any]],
mappings: List[AnalogicalMapping],
solutions: List[AnalogicalSolution],
best_solution: AnalogicalSolution
) -> List[Dict[str, Any]]:
"""Build the reasoning trace for the solution."""
trace = []
# Pattern extraction step
trace.append({
'step': 'pattern_extraction',
'patterns': [self._pattern_to_dict(p) for p in patterns],
'timestamp': datetime.now().isoformat()
})
# Pattern matching step
trace.append({
'step': 'pattern_matching',
'matches': matches,
'timestamp': datetime.now().isoformat()
})
# Mapping creation step
trace.append({
'step': 'mapping_creation',
'mappings': [self._mapping_to_dict(m) for m in mappings],
'timestamp': datetime.now().isoformat()
})
# Solution generation step
trace.append({
'step': 'solution_generation',
'solutions': [self._solution_to_dict(s) for s in solutions],
'timestamp': datetime.now().isoformat()
})
# Best solution selection step
trace.append({
'step': 'solution_selection',
'selected_solution': self._solution_to_dict(best_solution),
'timestamp': datetime.now().isoformat()
})
return trace
def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
"""Convert pattern to dictionary for serialization."""
return {
'id': pattern.id,
'level': pattern.level.value,
'features': pattern.features,
'relations': pattern.relations,
'constraints': pattern.constraints,
'metadata': pattern.metadata,
'timestamp': pattern.timestamp
}
def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
"""Convert mapping to dictionary for serialization."""
return {
'id': mapping.id,
'type': mapping.type.value,
'source_elements': mapping.source_elements,
'target_elements': mapping.target_elements,
'correspondences': mapping.correspondences,
'transformations': mapping.transformations,
'confidence': mapping.confidence,
'timestamp': mapping.timestamp
}
def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
"""Convert solution to dictionary for serialization."""
return {
'id': solution.id,
'source_analogy': solution.source_analogy,
'mapping': self._mapping_to_dict(solution.mapping),
'adaptation': solution.adaptation,
'inference': solution.inference,
'confidence': solution.confidence,
'validation': solution.validation,
'metadata': solution.metadata,
'timestamp': solution.timestamp
}
def clear_knowledge_base(self) -> None:
"""Clear the knowledge base."""
self.patterns.clear()
self.mappings.clear()
self.solutions.clear()
# Reset performance metrics
self.performance_metrics.update({
'pattern_matches': 0,
'successful_mappings': 0,
'failed_mappings': 0,
'adaptation_success_rate': 0.0,
'avg_solution_confidence': 0.0,
'pattern_distribution': defaultdict(int),
'mapping_distribution': defaultdict(int),
'total_patterns_used': 0,
'total_mappings_created': 0,
'total_solutions_generated': 0
})