agentic-system / reasoning /emergent.py
Cascade Bot
fix: standardize strategy class names
05c0fea
raw
history blame
5.45 kB
"""
Emergent reasoning strategy implementation.
"""
import logging
from typing import Dict, Any, List, Optional
from datetime import datetime
from .base import ReasoningStrategy
from .meta_learning import MetaLearningStrategy
from .chain_of_thought import ChainOfThoughtStrategy
from .tree_of_thoughts import TreeOfThoughtsStrategy
class EmergentStrategy(ReasoningStrategy):
"""Advanced emergent reasoning that:
1. Identifies patterns
2. Discovers relationships
3. Generates insights
4. Adapts to complexity
5. Evolves understanding
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize emergent reasoning with component strategies."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Initialize component strategies with shared config
strategy_config = {
'min_confidence': self.min_confidence,
'parallel_threshold': self.parallel_threshold,
'learning_rate': self.learning_rate,
'strategy_weights': self.strategy_weights
}
self.meta_learner = MetaLearningStrategy(strategy_config)
self.chain_of_thought = ChainOfThoughtStrategy(strategy_config)
self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config)
# Configure weights for strategy combination
self.weights = self.config.get('combination_weights', {
'meta': 0.4,
'chain': 0.3,
'tree': 0.3
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply emergent reasoning by combining multiple strategies and
identifying patterns that emerge from their interaction.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
Dict containing reasoning results and confidence scores
"""
try:
# Get results from each strategy
meta_result = await self.meta_learner.reason(query, context)
chain_result = await self.chain_of_thought.reason(query, context)
tree_result = await self.tree_of_thoughts.reason(query, context)
# Combine results with weighted averaging
combined_answer = self._combine_results([
(meta_result.get('answer', ''), self.weights['meta']),
(chain_result.get('answer', ''), self.weights['chain']),
(tree_result.get('answer', ''), self.weights['tree'])
])
# Calculate overall confidence
confidence = (
meta_result.get('confidence', 0) * self.weights['meta'] +
chain_result.get('confidence', 0) * self.weights['chain'] +
tree_result.get('confidence', 0) * self.weights['tree']
)
return {
'answer': combined_answer,
'confidence': confidence,
'reasoning_path': {
'meta': meta_result.get('reasoning_path'),
'chain': chain_result.get('reasoning_path'),
'tree': tree_result.get('reasoning_path')
},
'emergent_patterns': self._identify_patterns([
meta_result, chain_result, tree_result
])
}
except Exception as e:
return {
'error': f"Emergent reasoning failed: {str(e)}",
'confidence': 0.0
}
def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str:
"""Combine multiple reasoning results with weights."""
if not weighted_results:
return ""
# For now, use the highest weighted result
return max(weighted_results, key=lambda x: x[1])[0]
def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]:
"""Identify common patterns across different reasoning strategies."""
patterns = []
# Extract common themes or conclusions
answers = [r.get('answer', '') for r in results if r.get('answer')]
if len(set(answers)) == 1:
patterns.append("All strategies reached the same conclusion")
elif len(set(answers)) < len(answers):
patterns.append("Some strategies converged on similar conclusions")
# Look for common confidence patterns
confidences = [r.get('confidence', 0) for r in results]
avg_confidence = sum(confidences) / len(confidences) if confidences else 0
if avg_confidence > 0.8:
patterns.append("High confidence across all strategies")
elif avg_confidence < 0.3:
patterns.append("Low confidence across strategies")
return patterns