""" Advanced Team Management System ----------------------------- Manages specialized teams of agents that work together towards common goals: 1. Team A: Coders (App/Software Developers) 2. Team B: Business (Entrepreneurs) 3. Team C: Research (Deep Online Research) 4. Team D: Crypto & Sports Trading Features: - Cross-team collaboration - Goal alignment - Resource sharing - Synchronized execution """ from typing import Dict, List, Optional, Set, Union, TypeVar, Any from dataclasses import dataclass, field from enum import Enum import asyncio from datetime import datetime import uuid from collections import defaultdict from orchestrator import AgentOrchestrator, TaskPriority, AgentRole, AgentState from reasoning import UnifiedReasoningEngine # Agent capabilities and personality types class AgentCapability(Enum): """Core capabilities of agents.""" REASONING = "reasoning" LEARNING = "learning" EXECUTION = "execution" COORDINATION = "coordination" MONITORING = "monitoring" class AgentPersonality(Enum): """Different personality types for agents.""" ANALYTICAL = "analytical" CREATIVE = "creative" PRAGMATIC = "pragmatic" COLLABORATIVE = "collaborative" PROACTIVE = "proactive" CAUTIOUS = "cautious" class TeamType(Enum): """Specialized team types.""" CODERS = "coders" BUSINESS = "business" RESEARCH = "research" TRADERS = "traders" class TeamObjective(Enum): """Types of team objectives.""" SOFTWARE_DEVELOPMENT = "software_development" BUSINESS_OPPORTUNITY = "business_opportunity" MARKET_RESEARCH = "market_research" TRADING_STRATEGY = "trading_strategy" CROSS_TEAM_PROJECT = "cross_team_project" @dataclass class TeamProfile: """Team profile and capabilities.""" id: str type: TeamType name: str primary_objective: TeamObjective secondary_objectives: List[TeamObjective] agent_count: int expertise_areas: List[str] collaboration_score: float = 0.0 success_rate: float = 0.0 active_projects: int = 0 @dataclass class CollaborationLink: """Defines collaboration between teams.""" team_a_id: str team_b_id: str strength: float active_projects: int last_interaction: datetime success_rate: float class TeamManager: """Manages specialized teams and their collaboration.""" def __init__(self, orchestrator: AgentOrchestrator): self.orchestrator = orchestrator self.teams: Dict[str, TeamProfile] = {} self.agents: Dict[str, Dict[str, 'Agent']] = {} # team_id -> {agent_id -> Agent} self.collaboration_network: Dict[str, CollaborationLink] = {} self.shared_objectives: Dict[str, Set[str]] = defaultdict(set) # objective_id -> set of team_ids self.lock = asyncio.Lock() # Initialize specialized teams self._init_teams() def _init_teams(self): """Initialize specialized teams.""" team_configs = { TeamType.CODERS: { "name": "Development Team", "primary": TeamObjective.SOFTWARE_DEVELOPMENT, "secondary": [ TeamObjective.BUSINESS_OPPORTUNITY, TeamObjective.MARKET_RESEARCH ], "expertise": [ "full_stack_development", "cloud_architecture", "ai_ml", "blockchain", "mobile_development" ] }, TeamType.BUSINESS: { "name": "Business Strategy Team", "primary": TeamObjective.BUSINESS_OPPORTUNITY, "secondary": [ TeamObjective.MARKET_RESEARCH, TeamObjective.TRADING_STRATEGY ], "expertise": [ "market_analysis", "business_strategy", "digital_transformation", "startup_innovation", "product_management" ] }, TeamType.RESEARCH: { "name": "Research & Analysis Team", "primary": TeamObjective.MARKET_RESEARCH, "secondary": [ TeamObjective.BUSINESS_OPPORTUNITY, TeamObjective.TRADING_STRATEGY ], "expertise": [ "deep_research", "data_analysis", "trend_forecasting", "competitive_analysis", "technology_assessment" ] }, TeamType.TRADERS: { "name": "Trading & Investment Team", "primary": TeamObjective.TRADING_STRATEGY, "secondary": [ TeamObjective.MARKET_RESEARCH, TeamObjective.BUSINESS_OPPORTUNITY ], "expertise": [ "crypto_trading", "sports_betting", "risk_management", "market_timing", "portfolio_optimization" ] } } for team_type, config in team_configs.items(): team_id = str(uuid.uuid4()) self.teams[team_id] = TeamProfile( id=team_id, type=team_type, name=config["name"], primary_objective=config["primary"], secondary_objectives=config["secondary"], agent_count=5, # Default size expertise_areas=config["expertise"] ) self.agents[team_id] = {} async def initialize_team_agents(self): """Initialize agents for each team with appropriate roles and capabilities.""" for team_id, team in self.teams.items(): await self._create_team_agents(team_id) await self._establish_collaboration_links(team_id) async def _create_team_agents(self, team_id: str): """Create specialized agents for a team.""" team = self.teams[team_id] # Define agent configurations based on team type agent_configs = self._get_agent_configs(team.type) for config in agent_configs: agent_id = await self.orchestrator.create_agent( role=config["role"], capabilities=config["capabilities"] ) agent = Agent( profile=config["profile"], reasoning_engine=self.orchestrator.reasoning_engine, meta_learning=self.orchestrator.meta_learning, config=config.get("config", {}) ) self.agents[team_id][agent_id] = agent def _get_agent_configs(self, team_type: TeamType) -> List[Dict]: """Get agent configurations based on team type.""" base_configs = [ { "role": AgentRole.COORDINATOR, "capabilities": [ AgentCapability.REASONING, AgentCapability.COORDINATION ], "personality": AgentPersonality.PROACTIVE, "profile": { "name": "Coordinator", "description": "Team coordinator" } }, { "role": AgentRole.EXECUTOR, "capabilities": [ AgentCapability.EXECUTION, AgentCapability.LEARNING ], "personality": AgentPersonality.ANALYTICAL, "profile": { "name": "Executor", "description": "Task executor" } } ] # Add team-specific configurations if team_type == TeamType.CODERS: base_configs.extend([ { "role": AgentRole.EXECUTOR, "capabilities": [ AgentCapability.EXECUTION, AgentCapability.REASONING ], "personality": AgentPersonality.CREATIVE, "expertise": ["software_development", "system_design"], "profile": { "name": "Developer", "description": "Software developer" } } ]) elif team_type == TeamType.BUSINESS: base_configs.extend([ { "role": AgentRole.PLANNER, "capabilities": [ AgentCapability.REASONING, AgentCapability.LEARNING ], "personality": AgentPersonality.PROACTIVE, "expertise": ["business_strategy", "market_analysis"], "profile": { "name": "Planner", "description": "Business planner" } } ]) elif team_type == TeamType.RESEARCH: base_configs.extend([ { "role": AgentRole.MONITOR, "capabilities": [ AgentCapability.MONITORING, AgentCapability.LEARNING ], "personality": AgentPersonality.ANALYTICAL, "expertise": ["research", "data_analysis"], "profile": { "name": "Researcher", "description": "Researcher" } } ]) elif team_type == TeamType.TRADERS: base_configs.extend([ { "role": AgentRole.EXECUTOR, "capabilities": [ AgentCapability.EXECUTION, AgentCapability.REASONING ], "personality": AgentPersonality.CAUTIOUS, "expertise": ["trading", "risk_management"], "profile": { "name": "Trader", "description": "Trader" } } ]) return base_configs async def _establish_collaboration_links(self, team_id: str): """Establish collaboration links with other teams.""" team = self.teams[team_id] for other_id, other_team in self.teams.items(): if other_id != team_id: link_id = f"{min(team_id, other_id)}_{max(team_id, other_id)}" if link_id not in self.collaboration_network: self.collaboration_network[link_id] = CollaborationLink( team_a_id=team_id, team_b_id=other_id, strength=0.5, # Initial collaboration strength active_projects=0, last_interaction=datetime.now(), success_rate=0.0 ) async def create_cross_team_objective( self, objective: str, required_teams: List[TeamType], priority: TaskPriority = TaskPriority.MEDIUM ) -> str: """Create an objective that requires multiple teams.""" objective_id = str(uuid.uuid4()) # Find relevant teams selected_teams = [] for team_id, team in self.teams.items(): if team.type in required_teams: selected_teams.append(team_id) if len(selected_teams) < len(required_teams): raise ValueError("Not all required teams are available") # Create shared objective self.shared_objectives[objective_id].update(selected_teams) # Create tasks for each team tasks = [] for team_id in selected_teams: task_id = await self.orchestrator.submit_task( description=f"Team {self.teams[team_id].name} contribution to: {objective}", priority=priority ) tasks.append(task_id) return objective_id async def monitor_objective_progress(self, objective_id: str) -> Dict: """Monitor progress of a cross-team objective.""" if objective_id not in self.shared_objectives: raise ValueError("Unknown objective") team_progress = {} for team_id in self.shared_objectives[objective_id]: team = self.teams[team_id] team_agents = self.agents[team_id] # Calculate team progress active_agents = sum(1 for agent in team_agents.values() if agent.state == AgentState.BUSY) completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents) team_progress[team.name] = { "active_agents": active_agents, "completion_rate": completion_rate, "collaboration_score": team.collaboration_score } return team_progress async def optimize_team_collaboration(self): """Optimize collaboration between teams.""" for link in self.collaboration_network.values(): team_a = self.teams[link.team_a_id] team_b = self.teams[link.team_b_id] # Update collaboration strength based on: # 1. Number of successful joint projects # 2. Frequency of interaction # 3. Complementary expertise success_factor = link.success_rate interaction_factor = min((datetime.now() - link.last_interaction).days / 30.0, 1.0) expertise_overlap = len( set(team_a.expertise_areas) & set(team_b.expertise_areas) ) / len(set(team_a.expertise_areas) | set(team_b.expertise_areas)) new_strength = ( 0.4 * success_factor + 0.3 * (1 - interaction_factor) + 0.3 * (1 - expertise_overlap) ) link.strength = 0.7 * link.strength + 0.3 * new_strength async def get_team_recommendations(self, objective: str) -> List[TeamType]: """Get recommended teams for an objective based on expertise and collaboration history.""" # Analyze objective to determine required expertise required_expertise = await self._analyze_objective(objective) # Score each team team_scores = {} for team_id, team in self.teams.items(): # Calculate expertise match expertise_match = len( set(required_expertise) & set(team.expertise_areas) ) / len(required_expertise) # Calculate collaboration potential collab_potential = self._calculate_collaboration_potential(team_id) # Calculate success history success_history = team.success_rate # Weighted score score = ( 0.4 * expertise_match + 0.3 * collab_potential + 0.3 * success_history ) team_scores[team.type] = score # Return sorted recommendations return sorted( team_scores.keys(), key=lambda x: team_scores[x], reverse=True ) async def _analyze_objective(self, objective: str) -> List[str]: """Analyze an objective to determine required expertise.""" # Use reasoning engine to analyze objective analysis = await self.orchestrator.reasoning_engine.reason( query=f"Analyze required expertise for: {objective}", context={ "available_expertise": [ expertise for team in self.teams.values() for expertise in team.expertise_areas ] } ) return analysis.get("required_expertise", []) def _calculate_collaboration_potential(self, team_id: str) -> float: """Calculate a team's collaboration potential based on history.""" team_links = [ link for link in self.collaboration_network.values() if team_id in (link.team_a_id, link.team_b_id) ] if not team_links: return 0.5 return sum(link.strength for link in team_links) / len(team_links) async def update_team_metrics(self): """Update performance metrics for all teams.""" for team_id, team in self.teams.items(): team_agents = self.agents[team_id] # Calculate success rate completed_tasks = sum( agent.get_completed_task_count() for agent in team_agents.values() ) total_tasks = sum( agent.get_total_task_count() for agent in team_agents.values() ) team.success_rate = completed_tasks / max(1, total_tasks) # Calculate collaboration score team_links = [ link for link in self.collaboration_network.values() if team_id in (link.team_a_id, link.team_b_id) ] team.collaboration_score = ( sum(link.strength for link in team_links) / len(team_links) if team_links else 0.5 ) class Agent: def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool, config: Optional[Dict[str, Any]] = None): self.profile = profile self.config = config or {} # Use provided reasoning engine or create one with config self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine( min_confidence=self.config.get('min_confidence', 0.7), parallel_threshold=self.config.get('parallel_threshold', 3), learning_rate=self.config.get('learning_rate', 0.1), strategy_weights=self.config.get('strategy_weights', { "LOCAL_LLM": 0.8, "CHAIN_OF_THOUGHT": 0.6, "TREE_OF_THOUGHTS": 0.5, "META_LEARNING": 0.4 }) ) self.meta_learning = meta_learning self.state = AgentState.IDLE def get_task_completion_rate(self): # Implement task completion rate calculation pass def get_completed_task_count(self): # Implement completed task count calculation pass def get_total_task_count(self): # Implement total task count calculation pass