"""Quantum-inspired reasoning implementations.""" import logging from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple import json from dataclasses import dataclass, field from enum import Enum from datetime import datetime import numpy as np from collections import defaultdict from .base import ReasoningStrategy @dataclass class QuantumState: """Quantum state with superposition and entanglement.""" name: str amplitude: complex phase: float entangled_states: List[str] = field(default_factory=list) class QuantumReasoning(ReasoningStrategy): """ Advanced quantum reasoning that: 1. Creates quantum states 2. Applies quantum operations 3. Measures outcomes 4. Handles superposition 5. Models entanglement """ def __init__(self, config: Optional[Dict[str, Any]] = None): """Initialize quantum reasoning.""" super().__init__() self.config = config or {} # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) self.parallel_threshold = self.config.get('parallel_threshold', 3) self.learning_rate = self.config.get('learning_rate', 0.1) self.strategy_weights = self.config.get('strategy_weights', { "LOCAL_LLM": 0.8, "CHAIN_OF_THOUGHT": 0.6, "TREE_OF_THOUGHTS": 0.5, "META_LEARNING": 0.4 }) # Configure quantum parameters self.num_qubits = self.config.get('num_qubits', 3) self.measurement_threshold = self.config.get('measurement_threshold', 0.1) self.decoherence_rate = self.config.get('decoherence_rate', 0.01) async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: """ Apply quantum reasoning to analyze complex decisions. Args: query: The input query to reason about context: Additional context and parameters Returns: Dict containing reasoning results and confidence scores """ try: # Initialize quantum states states = await self._initialize_states(query, context) # Apply quantum operations evolved_states = await self._apply_operations(states, context) # Measure outcomes measurements = await self._measure_states(evolved_states, context) # Generate analysis analysis = await self._generate_analysis(measurements, context) return { 'answer': self._format_analysis(analysis), 'confidence': self._calculate_confidence(measurements), 'states': states, 'evolved_states': evolved_states, 'measurements': measurements, 'analysis': analysis } except Exception as e: logging.error(f"Quantum reasoning failed: {str(e)}") return { 'error': f"Quantum reasoning failed: {str(e)}", 'confidence': 0.0 } async def _initialize_states( self, query: str, context: Dict[str, Any] ) -> List[QuantumState]: """Initialize quantum states.""" states = [] # Extract key terms for state initialization terms = set(query.lower().split()) # Create quantum states based on terms for i, term in enumerate(terms): if i >= self.num_qubits: break # Calculate initial amplitude and phase amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits])) phase = 2 * np.pi * i / len(terms[:self.num_qubits]) states.append(QuantumState( name=term, amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)), phase=phase )) # Create entangled states if specified if context.get('entangle', False): self._entangle_states(states) return states async def _apply_operations( self, states: List[QuantumState], context: Dict[str, Any] ) -> List[QuantumState]: """Apply quantum operations to states.""" evolved_states = [] # Get operation parameters rotation = context.get('rotation', 0.0) phase_shift = context.get('phase_shift', 0.0) for state in states: # Apply rotation rotated_amplitude = state.amplitude * np.exp(1j * rotation) # Apply phase shift shifted_phase = (state.phase + phase_shift) % (2 * np.pi) # Apply decoherence decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate) evolved_states.append(QuantumState( name=state.name, amplitude=decohered_amplitude, phase=shifted_phase, entangled_states=state.entangled_states.copy() )) return evolved_states async def _measure_states( self, states: List[QuantumState], context: Dict[str, Any] ) -> Dict[str, float]: """Measure quantum states.""" measurements = {} # Calculate total probability total_probability = sum( abs(state.amplitude) ** 2 for state in states ) if total_probability > 0: # Normalize and store measurements for state in states: probability = (abs(state.amplitude) ** 2) / total_probability if probability > self.measurement_threshold: measurements[state.name] = probability return measurements def _entangle_states(self, states: List[QuantumState]) -> None: """Create entanglement between states.""" if len(states) < 2: return # Simple entanglement: connect adjacent states for i in range(len(states) - 1): states[i].entangled_states.append(states[i + 1].name) states[i + 1].entangled_states.append(states[i].name) async def _generate_analysis( self, measurements: Dict[str, float], context: Dict[str, Any] ) -> Dict[str, Any]: """Generate quantum analysis.""" # Sort states by measurement probability ranked_states = sorted( measurements.items(), key=lambda x: x[1], reverse=True ) # Calculate quantum statistics amplitudes = list(measurements.values()) mean = np.mean(amplitudes) if amplitudes else 0 std = np.std(amplitudes) if amplitudes else 0 # Calculate quantum entropy entropy = -sum( p * np.log2(p) if p > 0 else 0 for p in measurements.values() ) return { 'top_state': ranked_states[0][0] if ranked_states else '', 'probability': ranked_states[0][1] if ranked_states else 0, 'alternatives': [ {'name': name, 'probability': prob} for name, prob in ranked_states[1:] ], 'statistics': { 'mean': mean, 'std': std, 'entropy': entropy } } def _format_analysis(self, analysis: Dict[str, Any]) -> str: """Format analysis into readable text.""" sections = [] # Top quantum state if analysis['top_state']: sections.append( f"Most probable quantum state: {analysis['top_state']} " f"(probability: {analysis['probability']:.2%})" ) # Alternative states if analysis['alternatives']: sections.append("\nAlternative quantum states:") for alt in analysis['alternatives']: sections.append( f"- {alt['name']}: {alt['probability']:.2%}" ) # Quantum statistics stats = analysis['statistics'] sections.append("\nQuantum statistics:") sections.append(f"- Mean amplitude: {stats['mean']:.2%}") sections.append(f"- Standard deviation: {stats['std']:.2%}") sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits") return "\n".join(sections) def _calculate_confidence(self, measurements: Dict[str, float]) -> float: """Calculate overall confidence score.""" if not measurements: return 0.0 # Base confidence confidence = 0.5 # Adjust based on measurement distribution probs = list(measurements.values()) # Strong leading measurement increases confidence max_prob = max(probs) if max_prob > 0.8: confidence += 0.3 elif max_prob > 0.6: confidence += 0.2 elif max_prob > 0.4: confidence += 0.1 # Low entropy (clear distinction) increases confidence entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs) max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy if entropy < 0.3 * max_entropy: confidence += 0.2 elif entropy < 0.6 * max_entropy: confidence += 0.1 return min(confidence, 1.0) class QuantumInspiredStrategy(ReasoningStrategy): """Implements Quantum-Inspired reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)}