"""Advanced strategy coordination patterns for the unified reasoning engine.""" import logging from typing import Dict, Any, List, Optional, Set, Union, Type, Callable import json from dataclasses import dataclass, field from enum import Enum from datetime import datetime import asyncio from collections import defaultdict from .base import ReasoningStrategy from .unified_engine import StrategyType, StrategyResult, UnifiedResult class CoordinationPattern(Enum): """Types of strategy coordination patterns.""" PIPELINE = "pipeline" PARALLEL = "parallel" HIERARCHICAL = "hierarchical" FEEDBACK = "feedback" ADAPTIVE = "adaptive" ENSEMBLE = "ensemble" class CoordinationPhase(Enum): """Phases in strategy coordination.""" INITIALIZATION = "initialization" EXECUTION = "execution" SYNCHRONIZATION = "synchronization" ADAPTATION = "adaptation" COMPLETION = "completion" @dataclass class CoordinationState: """State of strategy coordination.""" pattern: CoordinationPattern active_strategies: Dict[StrategyType, bool] phase: CoordinationPhase shared_context: Dict[str, Any] synchronization_points: List[str] adaptation_history: List[Dict[str, Any]] metadata: Dict[str, Any] = field(default_factory=dict) @dataclass class StrategyInteraction: """Interaction between strategies.""" source: StrategyType target: StrategyType interaction_type: str data: Dict[str, Any] timestamp: datetime = field(default_factory=datetime.now) class StrategyCoordinator: """ Advanced strategy coordinator that: 1. Manages strategy interactions 2. Implements coordination patterns 3. Handles state synchronization 4. Adapts coordination dynamically 5. Optimizes strategy combinations """ def __init__(self, strategies: Dict[StrategyType, ReasoningStrategy], learning_rate: float = 0.1): self.strategies = strategies self.learning_rate = learning_rate # Coordination state self.states: Dict[str, CoordinationState] = {} self.interactions: List[StrategyInteraction] = [] # Pattern performance self.pattern_performance: Dict[CoordinationPattern, List[float]] = defaultdict(list) self.pattern_weights: Dict[CoordinationPattern, float] = { pattern: 1.0 for pattern in CoordinationPattern } async def coordinate(self, query: str, context: Dict[str, Any], pattern: Optional[CoordinationPattern] = None) -> Dict[str, Any]: """Coordinate strategy execution using specified pattern.""" try: # Select pattern if not specified if not pattern: pattern = await self._select_pattern(query, context) # Initialize coordination state = await self._initialize_coordination(pattern, context) # Execute coordination pattern if pattern == CoordinationPattern.PIPELINE: result = await self._coordinate_pipeline(query, context, state) elif pattern == CoordinationPattern.PARALLEL: result = await self._coordinate_parallel(query, context, state) elif pattern == CoordinationPattern.HIERARCHICAL: result = await self._coordinate_hierarchical(query, context, state) elif pattern == CoordinationPattern.FEEDBACK: result = await self._coordinate_feedback(query, context, state) elif pattern == CoordinationPattern.ADAPTIVE: result = await self._coordinate_adaptive(query, context, state) elif pattern == CoordinationPattern.ENSEMBLE: result = await self._coordinate_ensemble(query, context, state) else: raise ValueError(f"Unsupported coordination pattern: {pattern}") # Update performance metrics self._update_pattern_performance(pattern, result) return result except Exception as e: logging.error(f"Error in strategy coordination: {str(e)}") return { "success": False, "error": str(e), "pattern": pattern.value if pattern else None } async def _select_pattern(self, query: str, context: Dict[str, Any]) -> CoordinationPattern: """Select appropriate coordination pattern.""" prompt = f""" Select coordination pattern: Query: {query} Context: {json.dumps(context)} Consider: 1. Task complexity and type 2. Strategy dependencies 3. Resource constraints 4. Performance history 5. Adaptation needs Format as: [Selection] Pattern: ... Rationale: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) selection = self._parse_pattern_selection(response["answer"]) # Weight by performance history weighted_patterns = { pattern: self.pattern_weights[pattern] * selection.get(pattern.value, 0.0) for pattern in CoordinationPattern } return max(weighted_patterns.items(), key=lambda x: x[1])[0] async def _coordinate_pipeline(self, query: str, context: Dict[str, Any], state: CoordinationState) -> Dict[str, Any]: """Coordinate strategies in pipeline pattern.""" results = [] current_context = context.copy() # Determine optimal order strategy_order = await self._determine_pipeline_order(query, context) for strategy_type in strategy_order: try: # Execute strategy strategy = self.strategies[strategy_type] result = await strategy.reason(query, current_context) # Update context with result current_context.update({ "previous_result": result, "pipeline_position": len(results) }) results.append(StrategyResult( strategy_type=strategy_type, success=result.get("success", False), answer=result.get("answer"), confidence=result.get("confidence", 0.0), reasoning_trace=result.get("reasoning_trace", []), metadata=result.get("metadata", {}), performance_metrics=result.get("performance_metrics", {}) )) # Record interaction self._record_interaction( source=strategy_type, target=strategy_order[len(results)] if len(results) < len(strategy_order) else None, interaction_type="pipeline_transfer", data={"result": result} ) except Exception as e: logging.error(f"Error in pipeline strategy {strategy_type}: {str(e)}") return { "success": any(r.success for r in results), "results": results, "pattern": CoordinationPattern.PIPELINE.value, "metrics": { "total_steps": len(results), "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0 } } async def _coordinate_parallel(self, query: str, context: Dict[str, Any], state: CoordinationState) -> Dict[str, Any]: """Coordinate strategies in parallel pattern.""" async def execute_strategy(strategy_type: StrategyType) -> StrategyResult: try: strategy = self.strategies[strategy_type] result = await strategy.reason(query, context) return StrategyResult( strategy_type=strategy_type, success=result.get("success", False), answer=result.get("answer"), confidence=result.get("confidence", 0.0), reasoning_trace=result.get("reasoning_trace", []), metadata=result.get("metadata", {}), performance_metrics=result.get("performance_metrics", {}) ) except Exception as e: logging.error(f"Error in parallel strategy {strategy_type}: {str(e)}") return StrategyResult( strategy_type=strategy_type, success=False, answer=None, confidence=0.0, reasoning_trace=[{"error": str(e)}], metadata={}, performance_metrics={} ) # Execute strategies in parallel tasks = [execute_strategy(strategy_type) for strategy_type in state.active_strategies if state.active_strategies[strategy_type]] results = await asyncio.gather(*tasks) # Synthesize results synthesis = await self._synthesize_parallel_results(results, context) return { "success": synthesis.get("success", False), "results": results, "synthesis": synthesis, "pattern": CoordinationPattern.PARALLEL.value, "metrics": { "total_strategies": len(results), "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0 } } async def _coordinate_hierarchical(self, query: str, context: Dict[str, Any], state: CoordinationState) -> Dict[str, Any]: """Coordinate strategies in hierarchical pattern.""" # Build strategy hierarchy hierarchy = await self._build_strategy_hierarchy(query, context) results = {} async def execute_level(level_strategies: List[StrategyType], level_context: Dict[str, Any]) -> List[StrategyResult]: tasks = [] for strategy_type in level_strategies: if strategy_type in state.active_strategies and state.active_strategies[strategy_type]: strategy = self.strategies[strategy_type] tasks.append(strategy.reason(query, level_context)) level_results = await asyncio.gather(*tasks) return [ StrategyResult( strategy_type=strategy_type, success=result.get("success", False), answer=result.get("answer"), confidence=result.get("confidence", 0.0), reasoning_trace=result.get("reasoning_trace", []), metadata=result.get("metadata", {}), performance_metrics=result.get("performance_metrics", {}) ) for strategy_type, result in zip(level_strategies, level_results) ] # Execute hierarchy levels current_context = context.copy() for level, level_strategies in enumerate(hierarchy): results[level] = await execute_level(level_strategies, current_context) # Update context for next level current_context.update({ "previous_level_results": results[level], "hierarchy_level": level }) return { "success": any(any(r.success for r in level_results) for level_results in results.values()), "results": results, "hierarchy": hierarchy, "pattern": CoordinationPattern.HIERARCHICAL.value, "metrics": { "total_levels": len(hierarchy), "level_success_rates": { level: sum(1 for r in results[level] if r.success) / len(results[level]) for level in results if results[level] } } } async def _coordinate_feedback(self, query: str, context: Dict[str, Any], state: CoordinationState) -> Dict[str, Any]: """Coordinate strategies with feedback loops.""" results = [] feedback_history = [] current_context = context.copy() max_iterations = 5 # Prevent infinite loops iteration = 0 while iteration < max_iterations: iteration += 1 # Execute strategies iteration_results = [] for strategy_type in state.active_strategies: if state.active_strategies[strategy_type]: try: strategy = self.strategies[strategy_type] result = await strategy.reason(query, current_context) strategy_result = StrategyResult( strategy_type=strategy_type, success=result.get("success", False), answer=result.get("answer"), confidence=result.get("confidence", 0.0), reasoning_trace=result.get("reasoning_trace", []), metadata=result.get("metadata", {}), performance_metrics=result.get("performance_metrics", {}) ) iteration_results.append(strategy_result) except Exception as e: logging.error(f"Error in feedback strategy {strategy_type}: {str(e)}") results.append(iteration_results) # Generate feedback feedback = await self._generate_feedback(iteration_results, current_context) feedback_history.append(feedback) # Check termination condition if self._should_terminate_feedback(feedback, iteration_results): break # Update context with feedback current_context.update({ "previous_results": iteration_results, "feedback": feedback, "iteration": iteration }) return { "success": any(any(r.success for r in iteration_results) for iteration_results in results), "results": results, "feedback_history": feedback_history, "pattern": CoordinationPattern.FEEDBACK.value, "metrics": { "total_iterations": iteration, "feedback_impact": self._calculate_feedback_impact(results, feedback_history) } } async def _coordinate_adaptive(self, query: str, context: Dict[str, Any], state: CoordinationState) -> Dict[str, Any]: """Coordinate strategies with adaptive selection.""" results = [] adaptations = [] current_context = context.copy() while len(results) < len(state.active_strategies): # Select next strategy next_strategy = await self._select_next_strategy( results, state.active_strategies, current_context) if not next_strategy: break try: # Execute strategy strategy = self.strategies[next_strategy] result = await strategy.reason(query, current_context) strategy_result = StrategyResult( strategy_type=next_strategy, success=result.get("success", False), answer=result.get("answer"), confidence=result.get("confidence", 0.0), reasoning_trace=result.get("reasoning_trace", []), metadata=result.get("metadata", {}), performance_metrics=result.get("performance_metrics", {}) ) results.append(strategy_result) # Adapt strategy selection adaptation = await self._adapt_strategy_selection( strategy_result, current_context) adaptations.append(adaptation) # Update context current_context.update({ "previous_results": results, "adaptations": adaptations, "current_strategy": next_strategy }) except Exception as e: logging.error(f"Error in adaptive strategy {next_strategy}: {str(e)}") return { "success": any(r.success for r in results), "results": results, "adaptations": adaptations, "pattern": CoordinationPattern.ADAPTIVE.value, "metrics": { "total_strategies": len(results), "adaptation_impact": self._calculate_adaptation_impact(results, adaptations) } } async def _coordinate_ensemble(self, query: str, context: Dict[str, Any], state: CoordinationState) -> Dict[str, Any]: """Coordinate strategies as an ensemble.""" # Execute all strategies results = [] for strategy_type in state.active_strategies: if state.active_strategies[strategy_type]: try: strategy = self.strategies[strategy_type] result = await strategy.reason(query, context) strategy_result = StrategyResult( strategy_type=strategy_type, success=result.get("success", False), answer=result.get("answer"), confidence=result.get("confidence", 0.0), reasoning_trace=result.get("reasoning_trace", []), metadata=result.get("metadata", {}), performance_metrics=result.get("performance_metrics", {}) ) results.append(strategy_result) except Exception as e: logging.error(f"Error in ensemble strategy {strategy_type}: {str(e)}") # Combine results using ensemble methods ensemble_result = await self._combine_ensemble_results(results, context) return { "success": ensemble_result.get("success", False), "results": results, "ensemble_result": ensemble_result, "pattern": CoordinationPattern.ENSEMBLE.value, "metrics": { "total_members": len(results), "ensemble_confidence": ensemble_result.get("confidence", 0.0) } } def _record_interaction(self, source: StrategyType, target: Optional[StrategyType], interaction_type: str, data: Dict[str, Any]): """Record strategy interaction.""" self.interactions.append(StrategyInteraction( source=source, target=target, interaction_type=interaction_type, data=data )) def _update_pattern_performance(self, pattern: CoordinationPattern, result: Dict[str, Any]): """Update pattern performance metrics.""" success_rate = result["metrics"].get("success_rate", 0.0) self.pattern_performance[pattern].append(success_rate) # Update weights using exponential moving average current_weight = self.pattern_weights[pattern] self.pattern_weights[pattern] = ( (1 - self.learning_rate) * current_weight + self.learning_rate * success_rate ) def get_performance_metrics(self) -> Dict[str, Any]: """Get comprehensive performance metrics.""" return { "pattern_weights": dict(self.pattern_weights), "average_performance": { pattern.value: sum(scores) / len(scores) if scores else 0 for pattern, scores in self.pattern_performance.items() }, "interaction_counts": defaultdict(int, { interaction.interaction_type: 1 for interaction in self.interactions }), "active_patterns": [ pattern.value for pattern, weight in self.pattern_weights.items() if weight > 0.5 ] }