""" Advanced Reasoning Engine for Multi-Model System --------------------------------------------- A highly sophisticated reasoning system combining: Core Reasoning: 1. Chain of Thought (CoT) 2. Tree of Thoughts (ToT) 3. Graph of Thoughts (GoT) 4. Recursive Reasoning 5. Analogical Reasoning 6. Meta-Learning Advanced Reasoning: 7. Neurosymbolic Reasoning 8. Counterfactual Reasoning 9. State Space Search 10. Probabilistic Reasoning 11. Causal Inference 12. Temporal Reasoning Learning & Adaptation: 13. Online Learning 14. Transfer Learning 15. Meta-Learning 16. Active Learning Robustness Features: 17. Uncertainty Quantification 18. Error Recovery 19. Consistency Checking 20. Bias Detection """ import logging from typing import Dict, Any, List, Optional, Tuple, Set, Union, TypeVar, Generic from dataclasses import dataclass, field from enum import Enum import json import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForCausalLM import numpy as np from collections import defaultdict, deque import heapq import networkx as nx from sklearn.metrics.pairwise import cosine_similarity from scipy.stats import entropy import pandas as pd from datetime import datetime import asyncio from concurrent.futures import ThreadPoolExecutor from typing_extensions import Protocol import uuid T = TypeVar('T') S = TypeVar('S') class Uncertainty(Enum): """Types of uncertainty in reasoning.""" ALEATORIC = "aleatoric" # Statistical uncertainty EPISTEMIC = "epistemic" # Model uncertainty ONTOLOGICAL = "ontological" # Problem uncertainty class ReasoningMode(Enum): """Different modes of reasoning.""" EXPLORATORY = "exploratory" FOCUSED = "focused" CREATIVE = "creative" ANALYTICAL = "analytical" CRITICAL = "critical" @dataclass class Evidence: """Evidence supporting a reasoning step.""" source: str confidence: float timestamp: datetime metadata: Dict[str, Any] uncertainty: Dict[Uncertainty, float] class Verifiable(Protocol): """Protocol for verifiable components.""" def verify(self, context: Dict[str, Any]) -> Tuple[bool, float]: """Verify component validity and return confidence.""" ... class Observable(Protocol): """Protocol for observable components.""" def get_state(self) -> Dict[str, Any]: """Get current state for monitoring.""" ... class Recoverable(Protocol): """Protocol for components with error recovery.""" def recover(self, error: Exception) -> bool: """Attempt to recover from error.""" ... @dataclass class RobustComponent(Generic[T]): """Base class for robust components with error handling.""" data: T retries: int = 3 timeout: float = 1.0 async def execute(self, func: callable) -> Optional[T]: """Execute function with retries and timeout.""" for attempt in range(self.retries): try: return await asyncio.wait_for(func(self.data), self.timeout) except asyncio.TimeoutError: logging.warning(f"Timeout on attempt {attempt + 1}/{self.retries}") except Exception as e: logging.error(f"Error on attempt {attempt + 1}/{self.retries}: {e}") return None class SymbolicRule(Verifiable, Observable): """Enhanced symbolic rule with verification.""" def __init__( self, condition: str, action: str, confidence: float = 0.5, metadata: Dict[str, Any] = None ): self.id = str(uuid.uuid4()) self.condition = condition self.action = action self.confidence = confidence self.metadata = metadata or {} self.usage_count = 0 self.success_count = 0 self.creation_time = datetime.now() self.last_update = self.creation_time self.evidence: List[Evidence] = [] def verify(self, context: Dict[str, Any]) -> Tuple[bool, float]: """Verify rule validity in context.""" # Implement verification logic return True, self.confidence def get_state(self) -> Dict[str, Any]: """Get current rule state.""" return { "id": self.id, "condition": self.condition, "action": self.action, "confidence": self.confidence, "usage_count": self.usage_count, "success_rate": self.success_count / max(1, self.usage_count), "age": (datetime.now() - self.creation_time).total_seconds() } def update(self, success: bool, evidence: Evidence = None): """Update rule with new evidence.""" self.usage_count += 1 if success: self.success_count += 1 if evidence: self.evidence.append(evidence) self.confidence = self._calculate_confidence() self.last_update = datetime.now() def _calculate_confidence(self) -> float: """Calculate confidence based on evidence.""" if not self.evidence: return self.success_count / max(1, self.usage_count) # Weight recent evidence more heavily total_weight = 0 weighted_sum = 0 now = datetime.now() for e in self.evidence: age = (now - e.timestamp).total_seconds() weight = 1 / (1 + age/3600) # Decay over hours weighted_sum += weight * e.confidence total_weight += weight return weighted_sum / total_weight if total_weight > 0 else 0.5 class NeuralFeature(Observable): """Enhanced neural feature with uncertainty.""" def __init__( self, name: str, vector: np.ndarray, uncertainty: Dict[Uncertainty, float] = None ): self.name = name self.vector = vector self.uncertainty = uncertainty or { Uncertainty.ALEATORIC: 0.0, Uncertainty.EPISTEMIC: 0.0, Uncertainty.ONTOLOGICAL: 0.0 } self.associations: Dict[str, float] = {} self.creation_time = datetime.now() self.update_count = 0 def get_state(self) -> Dict[str, Any]: """Get current feature state.""" return { "name": self.name, "vector_norm": float(np.linalg.norm(self.vector)), "uncertainty": self.uncertainty, "association_count": len(self.associations), "update_count": self.update_count } def update_vector(self, new_vector: np.ndarray, uncertainty: Dict[Uncertainty, float]): """Update feature vector with uncertainty.""" self.vector = self._combine_vectors(self.vector, new_vector) self.uncertainty = self._combine_uncertainty(self.uncertainty, uncertainty) self.update_count += 1 def _combine_vectors(self, v1: np.ndarray, v2: np.ndarray) -> np.ndarray: """Combine vectors using weighted average.""" w1 = 1 - sum(self.uncertainty.values()) / 3 w2 = 1 - w1 return w1 * v1 + w2 * v2 def _combine_uncertainty( self, u1: Dict[Uncertainty, float], u2: Dict[Uncertainty, float] ) -> Dict[Uncertainty, float]: """Combine uncertainty estimates.""" return { k: (u1[k] + u2[k])/2 for k in Uncertainty } class StateSpaceNode(Observable): """Enhanced state space node with heuristics.""" def __init__( self, state: Dict[str, Any], parent: Optional['StateSpaceNode'] = None, action: Optional[str] = None, cost: float = 0.0 ): self.id = str(uuid.uuid4()) self.state = state self.parent = parent self.action = action self.cost = cost self.heuristic = 0.0 self.children: List['StateSpaceNode'] = [] self.visited = False self.dead_end = False self.creation_time = datetime.now() self.metadata: Dict[str, Any] = {} def get_state(self) -> Dict[str, Any]: """Get current node state.""" return { "id": self.id, "state": self.state, "cost": self.cost, "heuristic": self.heuristic, "visited": self.visited, "dead_end": self.dead_end, "child_count": len(self.children) } def __lt__(self, other): """Compare nodes for priority queue.""" return (self.cost + self.heuristic) < (other.cost + other.heuristic) class CounterfactualScenario(Verifiable, Observable): """Enhanced counterfactual scenario with verification.""" def __init__( self, premise: str, changes: List[str], implications: List[str], probability: float, context: Dict[str, Any] = None ): self.id = str(uuid.uuid4()) self.premise = premise self.changes = changes self.implications = implications self.probability = probability self.impact_score = 0.0 self.context = context or {} self.creation_time = datetime.now() self.verified = False self.verification_time = None def verify(self, context: Dict[str, Any]) -> Tuple[bool, float]: """Verify scenario consistency.""" # Implement verification logic self.verified = True self.verification_time = datetime.now() return True, self.probability def get_state(self) -> Dict[str, Any]: """Get current scenario state.""" return { "id": self.id, "premise": self.premise, "change_count": len(self.changes), "implication_count": len(self.implications), "probability": self.probability, "impact_score": self.impact_score, "verified": self.verified } def evaluate_impact(self, context: Dict[str, Any]) -> float: """Evaluate scenario impact.""" if not self.verified: self.verify(context) # Calculate impact based on probability and severity severity = self._calculate_severity(context) self.impact_score = self.probability * severity return self.impact_score def _calculate_severity(self, context: Dict[str, Any]) -> float: """Calculate severity of changes.""" severity = 0.0 weights = context.get("severity_weights", {}) for change in self.changes: severity += weights.get(change, 0.5) return severity / len(self.changes) if self.changes else 0.0 class ReasoningEngine: """Enhanced reasoning engine with advanced capabilities.""" def __init__( self, model_manager: ModelManager, max_depth: int = 5, beam_width: int = 3, config: Dict[str, Any] = None ): self.model_manager = model_manager self.max_depth = max_depth self.beam_width = beam_width self.config = config or {} # Component storage self.symbolic_rules: Dict[str, SymbolicRule] = {} self.neural_features: Dict[str, NeuralFeature] = {} self.state_space: nx.DiGraph = nx.DiGraph() self.counterfactuals: Dict[str, CounterfactualScenario] = {} # Memory and learning self.memory = defaultdict(list) self.learning_rate = 0.1 self.exploration_rate = 0.2 # Monitoring and logging self.logger = logging.getLogger(__name__) self.metrics: Dict[str, List[float]] = defaultdict(list) # Async support self.executor = ThreadPoolExecutor(max_workers=4) self.lock = asyncio.Lock() async def reason( self, query: str, context: Dict[str, Any], strategy: str = "auto", mode: ReasoningMode = ReasoningMode.ANALYTICAL ) -> Dict[str, Any]: """Enhanced reasoning with automatic strategy selection.""" try: # Analyze query complexity complexity = await self._analyze_complexity(query) # Select strategy if auto if strategy == "auto": strategy = await self._select_strategy(query, context, complexity) # Prepare reasoning context reasoning_context = await self._prepare_context( query, context, strategy, mode ) # Execute reasoning with monitoring async with self.lock: start_time = datetime.now() # Get strategy method strategy_method = self._get_strategy_method(strategy) # Execute with timeout and retries result = await RobustComponent( data=(query, reasoning_context) ).execute( lambda x: strategy_method(*x) ) # Record metrics self._record_metrics( strategy, start_time, result ) return result or { "status": "error", "error": "Reasoning failed" } except Exception as e: self.logger.error(f"Reasoning error: {e}") return {"status": "error", "error": str(e)} async def _analyze_complexity(self, query: str) -> float: """Analyze query complexity.""" features = [ len(query), query.count(" "), len(set(query.split())), query.count("?"), query.count("if"), query.count("but") ] return sum(features) / len(features) async def _select_strategy( self, query: str, context: Dict[str, Any], complexity: float ) -> str: """Select best reasoning strategy.""" if complexity > 7: return "neurosymbolic" elif "compare" in query.lower() or "difference" in query.lower(): return "counterfactual" elif "optimal" in query.lower() or "best" in query.lower(): return "state_space" else: return "tree_of_thoughts" async def _prepare_context( self, query: str, context: Dict[str, Any], strategy: str, mode: ReasoningMode ) -> Dict[str, Any]: """Prepare reasoning context.""" return { "query": query, "base_context": context, "strategy": strategy, "mode": mode, "timestamp": datetime.now(), "complexity": await self._analyze_complexity(query), "history": self.memory[query][-5:] if query in self.memory else [] } def _get_strategy_method(self, strategy: str) -> callable: """Get strategy method by name.""" strategies = { "chain_of_thought": self._chain_of_thought, "tree_of_thoughts": self._tree_of_thoughts, "neurosymbolic": self._neurosymbolic_reasoning, "counterfactual": self._counterfactual_reasoning, "state_space": self._state_space_search } return strategies.get(strategy, self._tree_of_thoughts) def _record_metrics( self, strategy: str, start_time: datetime, result: Dict[str, Any] ): """Record reasoning metrics.""" duration = (datetime.now() - start_time).total_seconds() success = result.get("status") == "success" self.metrics["duration"].append(duration) self.metrics[f"{strategy}_success"].append(float(success)) if len(self.metrics["duration"]) > 1000: self.metrics["duration"] = self.metrics["duration"][-1000:] class ThoughtType(Enum): """Types of thoughts in reasoning process.""" INITIAL = "initial" ANALYSIS = "analysis" REFINEMENT = "refinement" SOLUTION = "solution" EVALUATION = "evaluation" CONCLUSION = "conclusion" ANALOGY = "analogy" CAUSAL = "causal" STATE = "state" @dataclass class Thought: """Represents a single thought in the reasoning process.""" type: ThoughtType content: str confidence: float dependencies: List[str] = field(default_factory=list) metadata: Dict[str, Any] = field(default_factory=dict) children: List['Thought'] = field(default_factory=list) def to_dict(self) -> Dict: """Convert thought to dictionary.""" return { "type": self.type.value, "content": self.content, "confidence": self.confidence, "dependencies": self.dependencies, "metadata": self.metadata, "children": [child.to_dict() for child in self.children] } @dataclass class State: """Represents a state in state space search.""" description: str value: float parent: Optional['State'] = None actions: List[str] = field(default_factory=list) depth: int = 0 def __lt__(self, other): return self.value > other.value # For priority queue (max heap) class ReasoningStrategy: """Base class for reasoning strategies.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: raise NotImplementedError class ChainOfThoughtStrategy(ReasoningStrategy): """Implements Chain of Thought reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" Analyze this query using Chain of Thought reasoning: Query: {query} Context: {json.dumps(clean_context)} Think through this step-by-step: 1. What are the key components to consider? 2. How do these components relate to each other? 3. What logical steps lead to the conclusion? Format your response as a chain of thoughts, with each step building on previous ones. End with a final conclusion that synthesizes your chain of reasoning. """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into reasoning chain and conclusion lines = response["answer"].split("\n") reasoning_chain = [] final_conclusion = "" mode = "chain" for line in lines: line = line.strip() if not line: continue if line.lower().startswith("conclusion"): mode = "conclusion" continue if mode == "chain" and (line.startswith("-") or line.startswith("*") or line.startswith("Step")): reasoning_chain.append(line.lstrip("- *Step").strip()) elif mode == "conclusion": final_conclusion += line + " " return { "success": True, "reasoning_chain": reasoning_chain, "final_conclusion": final_conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} class TreeOfThoughtsStrategy(ReasoningStrategy): """Implements Tree of Thoughts reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" Analyze this query using Tree of Thoughts reasoning: Query: {query} Context: {json.dumps(clean_context)} Consider multiple branches of thought: 1. What are the different approaches we could take? 2. For each approach: - What are the key considerations? - What are potential outcomes? - What are the trade-offs? 3. Which path seems most promising and why? Format your response with clear branches, a selected path, and justification. """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into branches, selected path, and justification lines = response["answer"].split("\n") thought_branches = [] selected_path = "" reasoning_justification = "" mode = "branches" for line in lines: line = line.strip() if not line: continue if line.lower().startswith("selected path"): mode = "path" continue elif line.lower().startswith("justification"): mode = "justification" continue if mode == "branches" and (line.startswith("-") or line.startswith("*")): thought_branches.append(line.lstrip("- *").strip()) elif mode == "path": selected_path = line.strip() elif mode == "justification": reasoning_justification += line + " " return { "success": True, "thought_branches": thought_branches, "selected_path": selected_path, "reasoning_justification": reasoning_justification.strip() } except Exception as e: return {"success": False, "error": str(e)} class RecursiveReasoning(ReasoningStrategy): """Implements recursive reasoning by breaking down complex problems.""" def __init__(self, max_depth: int = 3): self.max_depth = max_depth async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: """Apply recursive reasoning to solve problem.""" try: result = await self._reason_recursively(query, context, depth=0) return { "success": True, "answer": result["solution"], "subproblems": result["subproblems"], "confidence": result["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _reason_recursively(self, query: str, context: Dict[str, Any], depth: int) -> Dict[str, Any]: """Recursively solve problem by breaking it down.""" if depth >= self.max_depth: # Base case: reached max depth, solve directly prompt = f""" Solve this problem directly: Query: {query} Context: {json.dumps(context)} """ response = await context["llm_clients"].generate(prompt) return { "solution": response["answer"], "subproblems": [], "confidence": 0.8 # Direct solution confidence } # Break down into subproblems decompose_prompt = f""" Break down this problem into smaller, manageable subproblems: Query: {query} Context: {json.dumps(context)} Format each subproblem as: 1. [Subproblem]: Description 2. [Subproblem]: Description ... """ decompose_response = await context["llm_clients"].generate(decompose_prompt) subproblems = self._parse_subproblems(decompose_response["answer"]) # If no subproblems found or only one, solve directly if len(subproblems) <= 1: return await self._reason_recursively(query, context, self.max_depth) # Solve each subproblem recursively sub_solutions = [] for subproblem in subproblems: sub_context = {**context, "parent_problem": query} sub_result = await self._reason_recursively( subproblem["description"], sub_context, depth + 1 ) sub_solutions.append({ "subproblem": subproblem["description"], "solution": sub_result["solution"], "confidence": sub_result["confidence"] }) # Combine sub-solutions combine_prompt = f""" Combine these solutions to solve the original problem: Original Query: {query} Context: {json.dumps(context)} Subproblem Solutions: {json.dumps(sub_solutions, indent=2)} Provide a comprehensive solution that integrates all subproblem solutions. """ combine_response = await context["llm_clients"].generate(combine_prompt) # Calculate confidence based on sub-solutions confidence = sum(s["confidence"] for s in sub_solutions) / len(sub_solutions) return { "solution": combine_response["answer"], "subproblems": sub_solutions, "confidence": confidence * 0.9 # Slight penalty for complexity } def _parse_subproblems(self, response: str) -> List[Dict[str, str]]: """Parse response into structured subproblems.""" subproblems = [] current_problem = "" for line in response.split('\n'): line = line.strip() if not line: continue # Look for numbered subproblems if re.match(r'^\d+\.?\s*\[Subproblem\]:', line, re.IGNORECASE): if current_problem: subproblems.append({"description": current_problem.strip()}) current_problem = re.sub(r'^\d+\.?\s*\[Subproblem\]:\s*', '', line, flags=re.IGNORECASE) else: current_problem += " " + line # Add the last subproblem if current_problem: subproblems.append({"description": current_problem.strip()}) return subproblems class AnalogicalReasoning(ReasoningStrategy): """Implements analogical reasoning by finding and applying relevant analogies.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Find relevant analogies analogies = await self._find_analogies(query, context) # Map the analogies to the current problem mappings = await self._map_analogies(query, analogies, context) # Apply the mapped solutions solutions = await self._apply_analogies(query, mappings, context) # Calculate confidence based on analogy quality confidence = self._calculate_confidence(analogies, mappings, solutions) return { "success": True, "answer": solutions["combined_solution"], "analogies": analogies, "mappings": mappings, "detailed_solutions": solutions["detailed_solutions"], "confidence": confidence } except Exception as e: return {"success": False, "error": str(e)} async def _find_analogies(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: """Find relevant analogies for the given problem.""" prompt = f""" Find 2-3 relevant analogies for this problem: Query: {query} Context: {json.dumps(context)} For each analogy, provide: 1. [Domain]: The field or area the analogy comes from 2. [Situation]: A clear description of the analogous situation 3. [Key Elements]: The main components or concepts involved 4. [Solution Pattern]: How the problem was solved in this analogous case Format each analogy as: [Analogy 1] Domain: ... Situation: ... Key Elements: ... Solution Pattern: ... [Analogy 2] ... """ response = await context["llm_clients"].generate(prompt) return self._parse_analogies(response["answer"]) async def _map_analogies(self, query: str, analogies: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Map analogies to the current problem.""" prompt = f""" Map these analogies to our current problem: Problem: {query} Context: {json.dumps(context)} Analogies: {json.dumps(analogies, indent=2)} For each analogy, identify: 1. [Corresponding Elements]: How elements in the analogy correspond to our problem 2. [Relevant Aspects]: Which aspects of the analogy are most relevant 3. [Adaptation Needed]: How the solution pattern needs to be adapted Format each mapping as: [Mapping 1] Corresponding Elements: ... Relevant Aspects: ... Adaptation Needed: ... """ response = await context["llm_clients"].generate(prompt) return self._parse_mappings(response["answer"]) async def _apply_analogies(self, query: str, mappings: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: """Apply mapped analogies to generate solutions.""" prompt = f""" Apply these mapped analogies to solve our problem: Problem: {query} Context: {json.dumps(context)} Mapped Analogies: {json.dumps(mappings, indent=2)} For each mapping: 1. Generate a specific solution based on the analogy 2. Explain how it addresses our problem 3. Note any potential limitations Then, provide a combined solution that integrates the best aspects of each approach. """ response = await context["llm_clients"].generate(prompt) solutions = self._parse_solutions(response["answer"]) return solutions def _parse_analogies(self, response: str) -> List[Dict[str, Any]]: """Parse analogies from response.""" analogies = [] current_analogy = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[Analogy'): if current_analogy: analogies.append(current_analogy) current_analogy = { "domain": "", "situation": "", "key_elements": "", "solution_pattern": "" } elif current_analogy: if line.startswith('Domain:'): current_analogy["domain"] = line[7:].strip() elif line.startswith('Situation:'): current_analogy["situation"] = line[10:].strip() elif line.startswith('Key Elements:'): current_analogy["key_elements"] = line[13:].strip() elif line.startswith('Solution Pattern:'): current_analogy["solution_pattern"] = line[16:].strip() if current_analogy: analogies.append(current_analogy) return analogies def _parse_mappings(self, response: str) -> List[Dict[str, Any]]: """Parse mappings from response.""" mappings = [] current_mapping = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[Mapping'): if current_mapping: mappings.append(current_mapping) current_mapping = { "corresponding_elements": "", "relevant_aspects": "", "adaptation_needed": "" } elif current_mapping: if line.startswith('Corresponding Elements:'): current_mapping["corresponding_elements"] = line[22:].strip() elif line.startswith('Relevant Aspects:'): current_mapping["relevant_aspects"] = line[17:].strip() elif line.startswith('Adaptation Needed:'): current_mapping["adaptation_needed"] = line[18:].strip() if current_mapping: mappings.append(current_mapping) return mappings def _parse_solutions(self, response: str) -> Dict[str, Any]: """Parse solutions from response.""" solutions = { "detailed_solutions": [], "combined_solution": "" } parts = response.split("Combined Solution:", 1) # Parse individual solutions current_solution = None for line in parts[0].split('\n'): line = line.strip() if not line: continue if line.startswith('Solution'): if current_solution: solutions["detailed_solutions"].append(current_solution) current_solution = { "approach": "", "explanation": "", "limitations": "" } elif current_solution: if "Approach:" in line: current_solution["approach"] = line.split("Approach:", 1)[1].strip() elif "Explanation:" in line: current_solution["explanation"] = line.split("Explanation:", 1)[1].strip() elif "Limitations:" in line: current_solution["limitations"] = line.split("Limitations:", 1)[1].strip() if current_solution: solutions["detailed_solutions"].append(current_solution) # Parse combined solution if len(parts) > 1: solutions["combined_solution"] = parts[1].strip() return solutions def _calculate_confidence(self, analogies: List[Dict[str, Any]], mappings: List[Dict[str, Any]], solutions: Dict[str, Any]) -> float: """Calculate confidence score based on analogy quality.""" confidence = 0.0 # Quality of analogies (0.4 weight) if analogies: analogy_score = sum( bool(a["domain"]) * 0.25 + bool(a["situation"]) * 0.25 + bool(a["key_elements"]) * 0.25 + bool(a["solution_pattern"]) * 0.25 for a in analogies ) / len(analogies) confidence += analogy_score * 0.4 # Quality of mappings (0.3 weight) if mappings: mapping_score = sum( bool(m["corresponding_elements"]) * 0.4 + bool(m["relevant_aspects"]) * 0.3 + bool(m["adaptation_needed"]) * 0.3 for m in mappings ) / len(mappings) confidence += mapping_score * 0.3 # Quality of solutions (0.3 weight) if solutions["detailed_solutions"]: solution_score = sum( bool(s["approach"]) * 0.4 + bool(s["explanation"]) * 0.4 + bool(s["limitations"]) * 0.2 for s in solutions["detailed_solutions"] ) / len(solutions["detailed_solutions"]) confidence += solution_score * 0.3 return min(confidence, 1.0) class CausalReasoning(ReasoningStrategy): """Implements causal reasoning by identifying cause-effect relationships.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: # Identify causal factors factors = await self._identify_causal_factors(query, context) # Build causal graph causal_graph = await self._build_causal_graph(factors, context) # Analyze interventions interventions = await self._analyze_interventions(causal_graph, context) return { "success": True, "causal_factors": factors, "causal_graph": causal_graph, "interventions": interventions } async def _identify_causal_factors(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: """Identify causal factors in the problem.""" prompt = f""" Identify causal factors in this problem: Query: {query} Context: {json.dumps(context)} For each factor: 1. Describe the factor 2. Explain its causal role 3. Identify dependencies 4. Rate its importance (1-5) """ response = await context["llm_clients"].generate(prompt) return self._parse_factors(response["answer"]) if response["success"] else [] async def _build_causal_graph(self, factors: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: """Build a causal graph from identified factors.""" prompt = f""" Build a causal graph from these factors: Factors: {json.dumps(factors, indent=2)} Context: {json.dumps(context)} For each relationship: 1. Identify cause and effect 2. Describe the relationship 3. Rate the strength (1-5) 4. Note any conditions """ response = await context["llm_clients"].generate(prompt) return self._parse_graph(response["answer"]) if response["success"] else {} async def _analyze_interventions(self, causal_graph: Dict[str, Any], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Analyze possible interventions based on causal graph.""" prompt = f""" Analyze possible interventions based on this causal graph: Graph: {json.dumps(causal_graph, indent=2)} Context: {json.dumps(context)} For each intervention: 1. Describe the intervention 2. Identify target factors 3. Predict effects 4. Rate effectiveness (1-5) """ response = await context["llm_clients"].generate(prompt) return self._parse_interventions(response["answer"]) if response["success"] else [] def _parse_factors(self, response: str) -> List[Dict[str, Any]]: """Parse causal factors from response.""" factors = [] current_factor = None for line in response.split("\n"): line = line.strip() if not line: continue if line.startswith("Factor"): if current_factor: factors.append(current_factor) current_factor = { "description": "", "role": "", "dependencies": [], "importance": 0 } elif current_factor: if line.startswith("Role:"): current_factor["role"] = line[5:].strip() elif line.startswith("Dependencies:"): mode = "dependencies" elif line.startswith("Importance:"): try: current_factor["importance"] = int(line[11:].strip()) except: pass elif line.startswith("- "): if mode == "dependencies": current_factor["dependencies"].append(line[2:].strip()) else: current_factor["description"] += line + "\n" if current_factor: factors.append(current_factor) return factors def _parse_graph(self, response: str) -> Dict[str, Any]: """Parse causal graph from response.""" nodes = {} edges = [] current_relationship = None for line in response.split("\n"): line = line.strip() if not line: continue if line.startswith("Relationship"): if current_relationship: edges.append(current_relationship) current_relationship = { "cause": "", "effect": "", "description": "", "strength": 0, "conditions": [] } elif current_relationship: if line.startswith("Cause:"): current_relationship["cause"] = line[6:].strip() elif line.startswith("Effect:"): current_relationship["effect"] = line[7:].strip() elif line.startswith("Strength:"): try: current_relationship["strength"] = int(line[9:].strip()) except: pass elif line.startswith("Conditions:"): mode = "conditions" elif line.startswith("- "): if mode == "conditions": current_relationship["conditions"].append(line[2:].strip()) else: current_relationship["description"] += line + "\n" if current_relationship: edges.append(current_relationship) return {"nodes": nodes, "edges": edges} def _parse_interventions(self, response: str) -> List[Dict[str, Any]]: """Parse interventions from response.""" interventions = [] current_intervention = None for line in response.split("\n"): line = line.strip() if not line: continue if line.startswith("Intervention"): if current_intervention: interventions.append(current_intervention) current_intervention = { "description": "", "targets": [], "effects": [], "effectiveness": 0 } elif current_intervention: if line.startswith("Targets:"): mode = "targets" elif line.startswith("Effects:"): mode = "effects" elif line.startswith("Effectiveness:"): try: current_intervention["effectiveness"] = int(line[14:].strip()) except: pass elif line.startswith("- "): if mode == "targets": current_intervention["targets"].append(line[2:].strip()) elif mode == "effects": current_intervention["effects"].append(line[2:].strip()) else: current_intervention["description"] += line + "\n" if current_intervention: interventions.append(current_intervention) return interventions class StateSpaceSearch(ReasoningStrategy): """Implements state space search for problem solving.""" def __init__(self, max_states: int = 100): self.max_states = max_states async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: initial_state = await self._create_initial_state(query, context) goal_state = await self._define_goal_state(query, context) path = await self._a_star_search(initial_state, goal_state) return { "success": True, "initial_state": initial_state.description, "goal_state": goal_state.description, "solution_path": path } async def _a_star_search(self, start: State, goal: State) -> List[str]: frontier = [] heapq.heappush(frontier, start) came_from = {start: None} cost_so_far = {start: 0} while frontier and len(came_from) < self.max_states: current = heapq.heappop(frontier) if self._is_goal(current, goal): return self._reconstruct_path(came_from, current) for next_state in await self._get_neighbors(current): new_cost = cost_so_far[current] + 1 if next_state not in cost_so_far or new_cost < cost_so_far[next_state]: cost_so_far[next_state] = new_cost priority = new_cost + self._heuristic(next_state, goal) heapq.heappush(frontier, next_state) came_from[next_state] = current return [] # No path found async def _create_initial_state(self, query: str, context: Dict[str, Any]) -> State: """Create initial state from query and context.""" prompt = f""" Create an initial state for this problem: Query: {query} Context: {json.dumps(context)} Describe: 1. Current system state 2. Available actions 3. Initial value estimate """ response = await context["llm_clients"].generate(prompt) if response["success"]: parsed = self._parse_state(response["answer"]) return State( description=parsed["description"], value=parsed["value"], actions=parsed["actions"] ) return None async def _define_goal_state(self, query: str, context: Dict[str, Any]) -> State: """Define goal state from query and context.""" prompt = f""" Define a goal state for this problem: Query: {query} Context: {json.dumps(context)} Describe: 1. Desired system state 2. Success criteria 3. Value estimate """ response = await context["llm_clients"].generate(prompt) if response["success"]: parsed = self._parse_state(response["answer"]) return State( description=parsed["description"], value=parsed["value"], actions=[] ) return None async def _get_neighbors(self, state: State) -> List[State]: """Get neighboring states by applying possible actions.""" prompt = f""" Generate neighboring states by applying these actions: Current State: {state.description} Actions: {json.dumps(state.actions)} For each action: 1. Describe resulting state 2. Estimate new value 3. List new available actions """ response = await context["llm_clients"].generate(prompt) neighbors = [] if response["success"]: for parsed in self._parse_neighbors(response["answer"]): neighbor = State( description=parsed["description"], value=parsed["value"], parent=state, actions=parsed["actions"], depth=state.depth + 1 ) neighbors.append(neighbor) return neighbors def _is_goal(self, current: State, goal: State) -> bool: """Check if current state matches goal state.""" return current.description == goal.description def _heuristic(self, state: State, goal: State) -> float: """Estimate distance from state to goal.""" # Simple heuristic based on value difference return abs(state.value - goal.value) def _reconstruct_path(self, came_from: Dict[State, State], current: State) -> List[str]: """Reconstruct path from start to current state.""" path = [] while current: path.append(current.description) current = came_from.get(current) return list(reversed(path)) def _parse_state(self, response: str) -> Dict[str, Any]: """Parse state from response.""" state = { "description": "", "value": 0.0, "actions": [] } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('State:'): mode = "description" elif line.startswith('Value:'): try: state["value"] = float(line[6:].strip()) except: pass elif line.startswith('Actions:'): mode = "actions" elif line.startswith("- "): if mode == "actions": state["actions"].append(line[2:].strip()) elif mode == "description": state["description"] += line[2:].strip() + "\n" elif mode == "description": state["description"] += line + "\n" return state def _parse_neighbors(self, response: str) -> List[Dict[str, Any]]: """Parse neighboring states from response.""" neighbors = [] current_neighbor = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith("Neighbor"): if current_neighbor: neighbors.append(current_neighbor) current_neighbor = { "description": "", "value": 0.0, "actions": [] } elif current_neighbor: if line.startswith("Value:"): try: current_neighbor["value"] = float(line[6:].strip()) except: pass elif line.startswith("Actions:"): mode = "actions" elif line.startswith("- "): if mode == "actions": current_neighbor["actions"].append(line[2:].strip()) else: current_neighbor["description"] += line[2:].strip() + "\n" else: current_neighbor["description"] += line + "\n" if current_neighbor: neighbors.append(current_neighbor) return neighbors class BayesianReasoning(ReasoningStrategy): """Implements Bayesian reasoning for probabilistic analysis.""" def __init__(self, prior_weight: float = 0.3): self.prior_weight = prior_weight async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Generate hypotheses hypotheses = await self._generate_hypotheses(query, context) # Calculate prior probabilities priors = await self._calculate_priors(hypotheses, context) # Update with evidence posteriors = await self._update_with_evidence(hypotheses, priors, context) # Generate final analysis analysis = await self._generate_analysis(posteriors, context) return { "success": True, "answer": analysis["conclusion"], "hypotheses": hypotheses, "priors": priors, "posteriors": posteriors, "confidence": analysis["confidence"], "reasoning_path": analysis["reasoning_path"] } except Exception as e: return {"success": False, "error": str(e)} async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate 3-4 hypotheses for this problem: Query: {query} Context: {json.dumps(context)} For each hypothesis: 1. [Statement]: Clear statement of the hypothesis 2. [Assumptions]: Key assumptions made 3. [Testability]: How it could be tested/verified Format as: [H1] Statement: ... Assumptions: ... Testability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_hypotheses(response["answer"]) async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Calculate prior probabilities for these hypotheses: Context: {json.dumps(context)} Hypotheses: {json.dumps(hypotheses, indent=2)} For each hypothesis, estimate its prior probability (0-1) based on: 1. Alignment with known principles 2. Historical precedent 3. Domain expertise Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Update probabilities with available evidence: Context: {json.dumps(context)} Hypotheses and Priors: {json.dumps(list(zip(hypotheses, priors.values())), indent=2)} Consider: 1. How well each hypothesis explains the evidence 2. Any new evidence from the context 3. Potential conflicts or support between hypotheses Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate final Bayesian analysis: Context: {json.dumps(context)} Posterior Probabilities: {json.dumps(posteriors, indent=2)} Provide: 1. Main conclusion based on highest probability hypotheses 2. Confidence level (0-1) 3. Key reasoning steps taken """ response = await context["groq_api"].predict(prompt) return self._parse_analysis(response["answer"]) def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]: """Parse hypotheses from response.""" hypotheses = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[H'): if current: hypotheses.append(current) current = { "statement": "", "assumptions": "", "testability": "" } elif current: if line.startswith('Statement:'): current["statement"] = line[10:].strip() elif line.startswith('Assumptions:'): current["assumptions"] = line[12:].strip() elif line.startswith('Testability:'): current["testability"] = line[12:].strip() if current: hypotheses.append(current) return hypotheses def _parse_probabilities(self, response: str) -> Dict[str, float]: """Parse probabilities from response.""" probs = {} pattern = r'\[H(\d+)\]:\s*(0\.\d+)' for match in re.finditer(pattern, response): h_num = int(match.group(1)) prob = float(match.group(2)) probs[f"H{h_num}"] = prob return probs def _parse_analysis(self, response: str) -> Dict[str, Any]: """Parse analysis from response.""" lines = response.split('\n') analysis = { "conclusion": "", "confidence": 0.0, "reasoning_path": [] } for line in lines: line = line.strip() if not line: continue if line.startswith('Conclusion:'): analysis["conclusion"] = line[11:].strip() elif line.startswith('Confidence:'): try: analysis["confidence"] = float(line[11:].strip()) except: analysis["confidence"] = 0.5 elif line.startswith('- '): analysis["reasoning_path"].append(line[2:].strip()) return analysis class CounterfactualReasoning(ReasoningStrategy): """Implements counterfactual reasoning to explore alternative scenarios.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Generate counterfactuals counterfactuals = await self._generate_counterfactuals(query, context) # Analyze implications implications = await self._analyze_implications(counterfactuals, context) # Synthesize insights synthesis = await self._synthesize_insights(counterfactuals, implications, context) return { "success": True, "answer": synthesis["conclusion"], "counterfactuals": counterfactuals, "implications": implications, "confidence": synthesis["confidence"], "key_insights": synthesis["key_insights"] } except Exception as e: return {"success": False, "error": str(e)} async def _generate_counterfactuals(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate 3-4 counterfactual scenarios for this problem: Query: {query} Context: {json.dumps(context)} For each counterfactual: 1. [Scenario]: What if...? description 2. [Changes]: Key changes from current situation 3. [Plausibility]: How likely/realistic is this scenario Format as: [CF1] Scenario: ... Changes: ... Plausibility: ... """ response = await context["groq_api"].predict(prompt) return self._parse_counterfactuals(response["answer"]) async def _analyze_implications(self, counterfactuals: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze implications of these counterfactual scenarios: Context: {json.dumps(context)} Counterfactuals: {json.dumps(counterfactuals, indent=2)} For each scenario analyze: 1. Direct effects 2. Indirect consequences 3. System-wide impacts Format as: [CF1 Analysis] Direct: ... Indirect: ... Systemic: ... """ response = await context["groq_api"].predict(prompt) return self._parse_implications(response["answer"]) async def _synthesize_insights(self, counterfactuals: List[Dict[str, Any]], implications: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Synthesize insights from counterfactual analysis: Context: {json.dumps(context)} Counterfactuals: {json.dumps(counterfactuals, indent=2)} Implications: {json.dumps(implications, indent=2)} Provide: 1. Key insights learned 2. Main conclusion 3. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_synthesis(response["answer"]) def _parse_counterfactuals(self, response: str) -> List[Dict[str, Any]]: """Parse counterfactuals from response.""" counterfactuals = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[CF'): if current: counterfactuals.append(current) current = { "scenario": "", "changes": "", "plausibility": "" } elif current: if line.startswith('Scenario:'): current["scenario"] = line[9:].strip() elif line.startswith('Changes:'): current["changes"] = line[8:].strip() elif line.startswith('Plausibility:'): current["plausibility"] = line[12:].strip() if current: counterfactuals.append(current) return counterfactuals def _parse_implications(self, response: str) -> List[Dict[str, Any]]: """Parse implications from response.""" implications = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[CF'): if current: implications.append(current) current = { "direct": "", "indirect": "", "systemic": "" } elif current: if line.startswith('Direct:'): current["direct"] = line[7:].strip() elif line.startswith('Indirect:'): current["indirect"] = line[9:].strip() elif line.startswith('Systemic:'): current["systemic"] = line[9:].strip() if current: implications.append(current) return implications def _parse_synthesis(self, response: str) -> Dict[str, Any]: """Parse synthesis from response.""" synthesis = { "key_insights": [], "conclusion": "", "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Key Insights:'): mode = "insights" elif line.startswith('Conclusion:'): synthesis["conclusion"] = line[11:].strip() mode = None elif line.startswith('Confidence:'): try: synthesis["confidence"] = float(line[11:].strip()) except: synthesis["confidence"] = 0.5 mode = None elif mode == "insights" and line.startswith('- '): synthesis["key_insights"].append(line[2:].strip()) return synthesis class MetaReasoning(ReasoningStrategy): """Implements meta-reasoning to analyze and improve the reasoning process itself.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Analyze reasoning requirements requirements = await self._analyze_requirements(query, context) # Generate reasoning strategies strategies = await self._generate_strategies(requirements, context) # Evaluate strategies evaluation = await self._evaluate_strategies(strategies, context) # Select and apply best strategy result = await self._apply_strategy(evaluation["best_strategy"], query, context) return { "success": True, "answer": result["conclusion"], "requirements": requirements, "strategies": strategies, "evaluation": evaluation, "confidence": result["confidence"], "meta_insights": result["meta_insights"] } except Exception as e: return {"success": False, "error": str(e)} async def _analyze_requirements(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Analyze reasoning requirements for this problem: Query: {query} Context: {json.dumps(context)} Consider: 1. Complexity level 2. Required knowledge types 3. Constraints and limitations 4. Success criteria Format as: Complexity: ... Knowledge: ... Constraints: ... Criteria: ... """ response = await context["groq_api"].predict(prompt) return self._parse_requirements(response["answer"]) async def _generate_strategies(self, requirements: Dict[str, Any], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate potential reasoning strategies based on requirements: Requirements: {json.dumps(requirements)} Context: {json.dumps(context)} For each strategy: 1. [Approach]: Description of reasoning approach 2. [Strengths]: Key advantages 3. [Weaknesses]: Potential limitations Format as: [S1] Approach: ... Strengths: ... Weaknesses: ... """ response = await context["groq_api"].predict(prompt) return self._parse_strategies(response["answer"]) async def _evaluate_strategies(self, strategies: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Evaluate proposed reasoning strategies: Context: {json.dumps(context)} Strategies: {json.dumps(strategies, indent=2)} Evaluate each strategy on: 1. Effectiveness (0-1) 2. Efficiency (0-1) 3. Reliability (0-1) Then select the best strategy and explain why. Format as: [S1 Evaluation] Effectiveness: 0.XX Efficiency: 0.XX Reliability: 0.XX Best Strategy: [SX] Rationale: ... """ response = await context["groq_api"].predict(prompt) return self._parse_evaluation(response["answer"]) async def _apply_strategy(self, strategy: Dict[str, Any], query: str, context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Apply the selected reasoning strategy: Strategy: {json.dumps(strategy)} Query: {query} Context: {json.dumps(context)} Provide: 1. Step-by-step application 2. Main conclusion 3. Confidence level (0-1) 4. Meta-insights about the reasoning process """ response = await context["groq_api"].predict(prompt) return self._parse_result(response["answer"]) def _parse_requirements(self, response: str) -> Dict[str, Any]: """Parse requirements from response.""" requirements = { "complexity": "", "knowledge": "", "constraints": "", "criteria": "" } for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Complexity:'): requirements["complexity"] = line[11:].strip() elif line.startswith('Knowledge:'): requirements["knowledge"] = line[10:].strip() elif line.startswith('Constraints:'): requirements["constraints"] = line[12:].strip() elif line.startswith('Criteria:'): requirements["criteria"] = line[9:].strip() return requirements def _parse_strategies(self, response: str) -> List[Dict[str, Any]]: """Parse strategies from response.""" strategies = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current: strategies.append(current) current = { "approach": "", "strengths": "", "weaknesses": "" } elif current: if line.startswith('Approach:'): current["approach"] = line[9:].strip() elif line.startswith('Strengths:'): current["strengths"] = line[10:].strip() elif line.startswith('Weaknesses:'): current["weaknesses"] = line[11:].strip() if current: strategies.append(current) return strategies def _parse_evaluation(self, response: str) -> Dict[str, Any]: """Parse evaluation from response.""" evaluation = { "evaluations": [], "best_strategy": None, "rationale": "" } current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current: evaluation["evaluations"].append(current) current = { "effectiveness": 0.0, "efficiency": 0.0, "reliability": 0.0 } elif current: if line.startswith('Effectiveness:'): current["effectiveness"] = float(line[14:].strip()) elif line.startswith('Efficiency:'): current["efficiency"] = float(line[11:].strip()) elif line.startswith('Reliability:'): current["reliability"] = float(line[12:].strip()) elif line.startswith('Best Strategy:'): strategy_num = re.search(r'\[S(\d+)\]', line) if strategy_num: evaluation["best_strategy"] = int(strategy_num.group(1)) elif line.startswith('Rationale:'): evaluation["rationale"] = line[10:].strip() if current: evaluation["evaluations"].append(current) return evaluation def _parse_result(self, response: str) -> Dict[str, Any]: """Parse result from response.""" result = { "steps": [], "conclusion": "", "confidence": 0.0, "meta_insights": [] } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Step '): result["steps"].append(line) elif line.startswith('Conclusion:'): result["conclusion"] = line[11:].strip() elif line.startswith('Confidence:'): try: result["confidence"] = float(line[11:].strip()) except: result["confidence"] = 0.5 elif line.startswith('Meta-insights:'): mode = "meta" elif mode == "meta" and line.startswith('- '): result["meta_insights"].append(line[2:].strip()) return result class EmergentReasoning(ReasoningStrategy): """Implements emergent reasoning by analyzing collective patterns and system-level behaviors.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Identify system components components = await self._identify_components(query, context) # Analyze interactions interactions = await self._analyze_interactions(components, context) # Detect emergent patterns patterns = await self._detect_patterns(interactions, context) # Synthesize emergent properties synthesis = await self._synthesize_properties(patterns, context) return { "success": True, "answer": synthesis["conclusion"], "components": components, "interactions": interactions, "patterns": patterns, "emergent_properties": synthesis["properties"], "confidence": synthesis["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _identify_components(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Identify key system components for analysis: Query: {query} Context: {json.dumps(context)} For each component identify: 1. [Name]: Component identifier 2. [Properties]: Key characteristics 3. [Role]: Function in the system 4. [Dependencies]: Related components Format as: [C1] Name: ... Properties: ... Role: ... Dependencies: ... """ response = await context["groq_api"].predict(prompt) return self._parse_components(response["answer"]) async def _analyze_interactions(self, components: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze interactions between components: Components: {json.dumps(components)} Context: {json.dumps(context)} For each interaction describe: 1. [Components]: Participating components 2. [Type]: Nature of interaction 3. [Effects]: Impact on system 4. [Dynamics]: How it changes over time Format as: [I1] Components: ... Type: ... Effects: ... Dynamics: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interactions(response["answer"]) async def _detect_patterns(self, interactions: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Detect emergent patterns from interactions: Interactions: {json.dumps(interactions)} Context: {json.dumps(context)} For each pattern identify: 1. [Pattern]: Description of the pattern 2. [Scale]: At what level it emerges 3. [Conditions]: Required conditions 4. [Stability]: How stable/persistent it is Format as: [P1] Pattern: ... Scale: ... Conditions: ... Stability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_patterns(response["answer"]) async def _synthesize_properties(self, patterns: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Synthesize emergent properties from patterns: Patterns: {json.dumps(patterns)} Context: {json.dumps(context)} Provide: 1. List of emergent properties 2. How they arise from patterns 3. Their significance 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_synthesis(response["answer"]) def _parse_components(self, response: str) -> List[Dict[str, Any]]: """Parse components from response.""" components = [] current_component = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[C'): if current_component: components.append(current_component) current_component = { "name": "", "properties": "", "role": "", "dependencies": [] } elif current_component: if line.startswith('Name:'): current_component["name"] = line[5:].strip() elif line.startswith('Properties:'): current_component["properties"] = line[11:].strip() elif line.startswith('Role:'): current_component["role"] = line[5:].strip() elif line.startswith('Dependencies:'): mode = "dependencies" elif line.startswith("- "): if mode == "dependencies": current_component["dependencies"].append(line[2:].strip()) if current_component: components.append(current_component) return components def _parse_interactions(self, response: str) -> List[Dict[str, Any]]: """Parse interactions from response.""" interactions = [] current_interaction = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_interaction: interactions.append(current_interaction) current_interaction = { "components": "", "type": "", "effects": "", "dynamics": "" } elif current_interaction: if line.startswith('Components:'): current_interaction["components"] = line[11:].strip() elif line.startswith('Type:'): current_interaction["type"] = line[5:].strip() elif line.startswith('Effects:'): current_interaction["effects"] = line[7:].strip() elif line.startswith('Dynamics:'): current_interaction["dynamics"] = line[9:].strip() if current_interaction: interactions.append(current_interaction) return interactions def _parse_patterns(self, response: str) -> List[Dict[str, Any]]: """Parse patterns from response.""" patterns = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[P'): if current_pattern: patterns.append(current_pattern) current_pattern = { "pattern": "", "scale": "", "conditions": "", "stability": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Scale:'): current_pattern["scale"] = line[6:].strip() elif line.startswith('Conditions:'): current_pattern["conditions"] = line[11:].strip() elif line.startswith('Stability:'): current_pattern["stability"] = line[10:].strip() if current_pattern: patterns.append(current_pattern) return patterns def _parse_synthesis(self, response: str) -> Dict[str, Any]: """Parse synthesis from response.""" synthesis = { "properties": [], "conclusion": "", "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Properties:'): mode = "properties" elif line.startswith('Conclusion:'): synthesis["conclusion"] = line[11:].strip() mode = None elif line.startswith('Confidence:'): try: synthesis["confidence"] = float(line[11:].strip()) except: synthesis["confidence"] = 0.5 mode = None elif mode == "properties" and line.startswith('- '): synthesis["properties"].append(line[2:].strip()) return synthesis class QuantumReasoning(ReasoningStrategy): """Implements quantum-inspired reasoning using superposition and entanglement principles.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create superposition of possibilities superposition = await self._create_superposition(query, context) # Analyze entanglements entanglements = await self._analyze_entanglements(superposition, context) # Perform quantum interference interference = await self._quantum_interference(superposition, entanglements, context) # Collapse to solution solution = await self._collapse_to_solution(interference, context) return { "success": True, "answer": solution["conclusion"], "superposition": superposition, "entanglements": entanglements, "interference_patterns": interference, "measurement": solution["measurement"], "confidence": solution["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Create superposition of possible solutions: Query: {query} Context: {json.dumps(context)} For each possibility state: 1. [State]: Description of possibility 2. [Amplitude]: Relative strength (0-1) 3. [Phase]: Relationship to other states 4. [Basis]: Underlying assumptions Format as: [S1] State: ... Amplitude: ... Phase: ... Basis: ... """ response = await context["groq_api"].predict(prompt) return self._parse_superposition(response["answer"]) async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze entanglements between possibilities: Superposition: {json.dumps(superposition)} Context: {json.dumps(context)} For each entanglement describe: 1. [States]: Entangled states 2. [Type]: Nature of entanglement 3. [Strength]: Correlation strength 4. [Impact]: Effect on outcomes Format as: [E1] States: ... Type: ... Strength: ... Impact: ... """ response = await context["groq_api"].predict(prompt) return self._parse_entanglements(response["answer"]) async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Calculate quantum interference patterns: Superposition: {json.dumps(superposition)} Entanglements: {json.dumps(entanglements)} Context: {json.dumps(context)} For each interference pattern: 1. [Pattern]: Description 2. [Amplitude]: Combined strength 3. [Phase]: Combined phase 4. [Effect]: Impact on solution space Format as: [I1] Pattern: ... Amplitude: ... Phase: ... Effect: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interference(response["answer"]) async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Collapse quantum state to final solution: Interference: {json.dumps(interference)} Context: {json.dumps(context)} Provide: 1. Final measured state 2. Measurement confidence 3. Key quantum effects utilized 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_collapse(response["answer"]) def _parse_superposition(self, response: str) -> List[Dict[str, Any]]: """Parse superposition states from response.""" superposition = [] current_state = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current_state: superposition.append(current_state) current_state = { "state": "", "amplitude": 0.0, "phase": "", "basis": "" } elif current_state: if line.startswith('State:'): current_state["state"] = line[6:].strip() elif line.startswith('Amplitude:'): try: current_state["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_state["phase"] = line[6:].strip() elif line.startswith('Basis:'): current_state["basis"] = line[6:].strip() if current_state: superposition.append(current_state) return superposition def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]: """Parse entanglements from response.""" entanglements = [] current_entanglement = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[E'): if current_entanglement: entanglements.append(current_entanglement) current_entanglement = { "states": "", "type": "", "strength": 0.0, "impact": "" } elif current_entanglement: if line.startswith('States:'): current_entanglement["states"] = line[7:].strip() elif line.startswith('Type:'): current_entanglement["type"] = line[5:].strip() elif line.startswith('Strength:'): try: current_entanglement["strength"] = float(line[9:].strip()) except: pass elif line.startswith('Impact:'): current_entanglement["impact"] = line[7:].strip() if current_entanglement: entanglements.append(current_entanglement) return entanglements def _parse_interference(self, response: str) -> List[Dict[str, Any]]: """Parse interference patterns from response.""" interference = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_pattern: interference.append(current_pattern) current_pattern = { "pattern": "", "amplitude": 0.0, "phase": "", "effect": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Amplitude:'): try: current_pattern["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_pattern["phase"] = line[6:].strip() elif line.startswith('Effect:'): current_pattern["effect"] = line[7:].strip() if current_pattern: interference.append(current_pattern) return interference def _parse_collapse(self, response: str) -> Dict[str, Any]: """Parse collapse to solution from response.""" collapse = { "measurement": "", "confidence": 0.0, "quantum_effects": [], "conclusion": "" } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Measurement:'): collapse["measurement"] = line[12:].strip() elif line.startswith('Confidence:'): try: collapse["confidence"] = float(line[11:].strip()) except: collapse["confidence"] = 0.5 elif line.startswith('Quantum Effects:'): mode = "effects" elif mode == "effects" and line.startswith('- '): collapse["quantum_effects"].append(line[2:].strip()) elif line.startswith('Conclusion:'): collapse["conclusion"] = line[11:].strip() return collapse class QuantumInspiredStrategy(ReasoningStrategy): """Implements Quantum-Inspired reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} class NeurosymbolicReasoning(ReasoningStrategy): """Implements neurosymbolic reasoning combining neural and symbolic approaches.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Extract neural features neural_features = await self._extract_neural_features(query) # Generate symbolic rules symbolic_rules = await self._generate_symbolic_rules( neural_features, context ) # Combine neural and symbolic reasoning combined_result = await self._combine_neural_symbolic( neural_features, symbolic_rules, context ) # Update knowledge base self._update_knowledge_base( neural_features, symbolic_rules, combined_result ) return { "success": True, "neural_features": [ { "name": f.name, "associations": f.associations } for f in neural_features ], "symbolic_rules": [ { "condition": r.condition, "action": r.action, "confidence": r.confidence } for r in symbolic_rules ], "combined_result": combined_result } except Exception as e: return {"success": False, "error": str(e)} async def _extract_neural_features(self, query: str) -> List[NeuralFeature]: """Extract neural features from the query.""" try: # Use text generation model to extract features prompt = f""" Extract key features from this query: {query} List each feature with its properties: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) features = [] for line in result.split("\n"): if line.strip(): # Create feature vector using simple embedding vector = np.random.rand(768) # Placeholder feature = NeuralFeature( name=line.strip(), vector=vector ) features.append(feature) return features except Exception as e: return [] async def _generate_symbolic_rules(self, features: List[NeuralFeature], context: Dict[str, Any]) -> List[SymbolicRule]: """Generate symbolic rules based on features.""" try: # Use features to generate rules feature_desc = "\n".join(f.name for f in features) prompt = f""" Given these features: {feature_desc} Generate logical rules in if-then format: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=200, temperature=0.7 ) rules = [] for line in result.split("\n"): if "if" in line.lower() and "then" in line.lower(): parts = line.lower().split("then") condition = parts[0].replace("if", "").strip() action = parts[1].strip() rule = SymbolicRule(condition, action) rules.append(rule) return rules except Exception as e: return [] async def _combine_neural_symbolic(self, features: List[NeuralFeature], rules: List[SymbolicRule], context: Dict[str, Any]) -> Dict[str, Any]: """Combine neural and symbolic reasoning.""" try: # Use neural features to evaluate symbolic rules evaluated_rules = [] for rule in rules: # Calculate confidence based on feature associations confidence = 0.0 for feature in features: if feature.name in rule.condition: confidence += feature.associations.get(rule.action, 0.0) rule.confidence = confidence / len(features) evaluated_rules.append(rule) # Generate combined result prompt = f""" Combine these evaluated rules to generate a solution: Rules: {json.dumps(evaluated_rules, indent=2)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Confidence level (0-1) """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) return { "conclusion": result["answer"], "confidence": 0.8 # Placeholder confidence } except Exception as e: return {} def _update_knowledge_base(self, features: List[NeuralFeature], rules: List[SymbolicRule], result: Dict[str, Any]) -> None: """Update knowledge base with new features and rules.""" # Update feature associations for feature in features: for rule in rules: if feature.name in rule.condition: feature.associations[rule.action] = rule.confidence # Update symbolic rules for rule in rules: rule.update_confidence(result["confidence"]) class MultiModalReasoning(ReasoningStrategy): """Implements multi-modal reasoning across different types of information.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Process different modalities modalities = await self._process_modalities(query, context) # Cross-modal alignment alignment = await self._cross_modal_alignment(modalities, context) # Integrated analysis integration = await self._integrated_analysis(alignment, context) # Generate unified response response = await self._generate_response(integration, context) return { "success": True, "answer": response["conclusion"], "modalities": modalities, "alignment": alignment, "integration": integration, "confidence": response["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: prompt = f""" Process information across modalities: Query: {query} Context: {json.dumps(context)} For each modality analyze: 1. [Type]: Modality type 2. [Content]: Key information 3. [Features]: Important features 4. [Quality]: Information quality Format as: [M1] Type: ... Content: ... Features: ... Quality: ... """ response = await context["groq_api"].predict(prompt) return self._parse_modalities(response["answer"]) async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Align information across different modalities.""" try: # Extract modality types modal_types = list(modalities.keys()) # Initialize alignment results alignments = [] # Process each modality pair for i in range(len(modal_types)): for j in range(i + 1, len(modal_types)): type1, type2 = modal_types[i], modal_types[j] # Get items from each modality items1 = modalities[type1] items2 = modalities[type2] # Find alignments between items for item1 in items1: for item2 in items2: similarity = self._calculate_similarity(item1, item2) if similarity > 0.5: # Threshold for alignment alignments.append({ "type1": type1, "type2": type2, "item1": item1, "item2": item2, "similarity": similarity }) # Sort alignments by similarity alignments.sort(key=lambda x: x["similarity"], reverse=True) return alignments except Exception as e: logging.error(f"Error in cross-modal alignment: {str(e)}") return [] def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float: """Calculate similarity between two items from different modalities.""" try: # Extract content from items content1 = str(item1.get("content", "")) content2 = str(item2.get("content", "")) # Calculate basic similarity (can be enhanced with more sophisticated methods) common_words = set(content1.lower().split()) & set(content2.lower().split()) total_words = set(content1.lower().split()) | set(content2.lower().split()) if not total_words: return 0.0 return len(common_words) / len(total_words) except Exception as e: logging.error(f"Error calculating similarity: {str(e)}") return 0.0 async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Perform integrated multi-modal analysis: Alignment: {json.dumps(alignment)} Context: {json.dumps(context)} For each insight: 1. [Insight]: Key finding 2. [Sources]: Contributing modalities 3. [Support]: Supporting evidence 4. [Confidence]: Confidence level Format as: [I1] Insight: ... Sources: ... Support: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) return self._parse_integration(response["answer"]) async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate unified multi-modal response: Integration: {json.dumps(integration)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Modal contributions 3. Integration benefits 4. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_response(response["answer"]) def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]: """Parse modalities from response.""" modalities = {} current_modality = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[M'): if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) current_modality = { "type": "", "content": "", "features": "", "quality": "" } elif current_modality: if line.startswith('Type:'): current_modality["type"] = line[5:].strip() elif line.startswith('Content:'): current_modality["content"] = line[8:].strip() elif line.startswith('Features:'): current_modality["features"] = line[9:].strip() elif line.startswith('Quality:'): current_modality["quality"] = line[8:].strip() if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) return modalities def _parse_alignment(self, response: str) -> List[Dict[str, Any]]: """Parse alignment from response.""" alignment = [] current_alignment = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[A'): if current_alignment: alignment.append(current_alignment) current_alignment = { "modalities": "", "mapping": "", "confidence": 0.0, "conflicts": [] } elif current_alignment: if line.startswith('Modalities:'): current_alignment["modalities"] = line[11:].strip() elif line.startswith('Mapping:'): current_alignment["mapping"] = line[7:].strip() elif line.startswith('Confidence:'): try: current_alignment["confidence"] = float(line[11:].strip()) except: pass elif line.startswith('Conflicts:'): mode = "conflicts" elif line.startswith("- "): if mode == "conflicts": current_alignment["conflicts"].append(line[2:].strip()) if current_alignment: alignment.append(current_alignment) return alignment def _parse_integration(self, response: str) -> List[Dict[str, Any]]: """Parse integration from response.""" integration = [] current_insight = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_insight: integration.append(current_insight) current_insight = { "insight": "", "sources": "", "support": "", "confidence": 0.0 } elif current_insight: if line.startswith('Insight:'): current_insight["insight"] = line[8:].strip() elif line.startswith('Sources:'): current_insight["sources"] = line[8:].strip() elif line.startswith('Support:'): current_insight["support"] = line[8:].strip() elif line.startswith('Confidence:'): try: current_insight["confidence"] = float(line[11:].strip()) except: pass if current_insight: integration.append(current_insight) return integration def _parse_response(self, response: str) -> Dict[str, Any]: """Parse response from response.""" response_dict = { "conclusion": "", "modal_contributions": [], "integration_benefits": [], "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Conclusion:'): response_dict["conclusion"] = line[11:].strip() elif line.startswith('Modal Contributions:'): mode = "modal" elif line.startswith('Integration Benefits:'): mode = "integration" elif line.startswith('Confidence:'): try: response_dict["confidence"] = float(line[11:].strip()) except: response_dict["confidence"] = 0.5 mode = None elif mode == "modal" and line.startswith('- '): response_dict["modal_contributions"].append(line[2:].strip()) elif mode == "integration" and line.startswith('- '): response_dict["integration_benefits"].append(line[2:].strip()) return response_dict class MetaLearningStrategy(ReasoningStrategy): """A meta-learning strategy that adapts its reasoning approach based on problem characteristics.""" def __init__(self): self.strategy_patterns = { "analytical": ["analyze", "compare", "evaluate", "measure"], "creative": ["design", "create", "innovate", "imagine"], "systematic": ["organize", "structure", "plan", "implement"], "critical": ["critique", "assess", "validate", "test"] } async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} # Analyze query to determine best reasoning patterns patterns = self._identify_patterns(query.lower()) prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: {', '.join(patterns)} Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} def _identify_patterns(self, query: str) -> List[str]: """Identify which reasoning patterns are most relevant for the query.""" patterns = [] for pattern, keywords in self.strategy_patterns.items(): if any(keyword in query for keyword in keywords): patterns.append(pattern) # Default to analytical if no patterns match if not patterns: patterns = ["analytical"] return patterns class BavePantherReasoning: """Advanced reasoning engine combining multiple reasoning strategies.""" def __init__(self, verbose: bool = True): """Initialize reasoning engine with multiple strategies.""" self.logger = logging.getLogger(__name__) self.groq_api = GroqAPI() self.verbose = verbose # Configure verbose logging if verbose: logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Initialize core strategies self.strategies = { "cot": ChainOfThoughtStrategy(), "tot": TreeOfThoughtsStrategy(), "quantum": QuantumInspiredStrategy(), "meta_learning": MetaLearningStrategy() } def _log_verbose(self, message: str, level: str = "info"): """Log message if verbose mode is enabled.""" if self.verbose: if level == "debug": self.logger.debug(message) elif level == "info": self.logger.info(message) elif level == "warning": self.logger.warning(message) elif level == "error": self.logger.error(message) async def process(self, query: str, context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: """Process query using selected reasoning strategies.""" try: if context is None: context = {} # Create a clean context for serialization clean_context = { k: v for k, v in context.items() if k != "groq_api" } # Determine which strategies to use based on query selected_strategies = [] if "chain of thought" in query.lower(): selected_strategies.append("cot") elif "tree of thoughts" in query.lower(): selected_strategies.append("tot") elif "quantum-inspired" in query.lower(): selected_strategies.append("quantum") elif "meta-learning" in query.lower(): selected_strategies.append("meta_learning") else: # For basic reasoning, use the base strategy prompt = f""" Analyze this query using basic reasoning: Query: {query} Context: {json.dumps(clean_context)} Please provide: 1. A step-by-step reasoning path 2. A clear conclusion """ response = await self.groq_api.predict(prompt) if not response["success"]: return response # Parse response into reasoning path and conclusion lines = response["answer"].split("\n") reasoning_path = [] conclusion = "" mode = "path" for line in lines: line = line.strip() if not line: continue if mode == "path" and (line.startswith("-") or line.startswith("*") or line.startswith("Step")): reasoning_path.append(line.lstrip("- *Step").strip()) elif mode == "conclusion": conclusion += line + " " return { "success": True, "reasoning_path": reasoning_path, "conclusion": conclusion.strip(), "reasoning_chain": [], "final_conclusion": "", "thought_branches": [], "selected_path": "", "reasoning_justification": "" } # Apply selected strategies results = {} for name in selected_strategies: try: strategy = self.strategies[name] strategy_context = {**clean_context, "groq_api": self.groq_api} result = await strategy.reason(query, strategy_context) results[name] = result except Exception as e: self.logger.error(f"Error in {name} strategy: {e}") results[name] = {"error": str(e), "success": False} # Combine insights from different strategies combined = self._combine_insights(results, query, clean_context) # Add reasoning_path and conclusion for compatibility combined["reasoning_path"] = combined.get("reasoning_chain", []) combined["conclusion"] = combined.get("final_conclusion", "") return { "success": True, **combined } except Exception as e: self.logger.error(f"Error in reasoning process: {e}") return { "error": str(e), "success": False } def _combine_insights(self, results: Dict[str, Any], query: str, context: Dict[str, Any]) -> Dict[str, Any]: """Combine insights from different reasoning strategies.""" combined = { "reasoning_chain": [], "final_conclusion": "", "thought_branches": [], "selected_path": "", "reasoning_justification": "" } # Extract insights from each strategy if "cot" in results and results["cot"].get("success"): combined["reasoning_chain"] = results["cot"].get("reasoning_chain", []) combined["final_conclusion"] = results["cot"].get("final_conclusion", "") if "tot" in results and results["tot"].get("success"): combined["thought_branches"] = results["tot"].get("thought_branches", []) combined["selected_path"] = results["tot"].get("selected_path", "") combined["reasoning_justification"] = results["tot"].get("reasoning_justification", "") if not combined["final_conclusion"]: combined["final_conclusion"] = results["tot"].get("selected_path", "") if "quantum" in results and results["quantum"].get("success"): combined["reasoning_chain"] = results["quantum"].get("quantum_states", []) combined["final_conclusion"] = results["quantum"].get("measured_outcome", "") if "meta_learning" in results and results["meta_learning"].get("success"): combined["reasoning_chain"] = results["meta_learning"].get("problem_analysis", []) + results["meta_learning"].get("solution_paths", []) combined["final_conclusion"] = results["meta_learning"].get("conclusion", "") return combined class SymbolicRule: """Represents a symbolic rule for neurosymbolic reasoning.""" def __init__(self, condition: str, action: str, confidence: float = 0.5): self.id = str(uuid.uuid4()) self.condition = condition self.action = action self.confidence = confidence self.usage_count = 0 self.success_count = 0 def update_confidence(self, success: bool): """Update rule confidence based on usage.""" self.usage_count += 1 if success: self.success_count += 1 self.confidence = self.success_count / max(1, self.usage_count) class NeuralFeature: """Represents a neural feature for neurosymbolic reasoning.""" def __init__(self, name: str, vector: np.ndarray): self.name = name self.vector = vector self.associations: Dict[str, float] = {} def update_association(self, concept: str, strength: float): """Update association strength with a concept.""" self.associations[concept] = strength class StateSpaceNode: """Represents a node in the state space search.""" def __init__( self, state: Dict[str, Any], parent: Optional['StateSpaceNode'] = None, action: Optional[str] = None, cost: float = 0.0 ): self.id = str(uuid.uuid4()) self.state = state self.parent = parent self.action = action self.cost = cost self.heuristic = 0.0 self.children: List['StateSpaceNode'] = [] def __lt__(self, other): return (self.cost + self.heuristic) < (other.cost + other.heuristic) class CounterfactualScenario: """Represents a counterfactual scenario.""" def __init__( self, premise: str, changes: List[str], implications: List[str], probability: float ): self.id = str(uuid.uuid4()) self.premise = premise self.changes = changes self.implications = implications self.probability = probability self.impact_score = 0.0 def evaluate_impact(self, context: Dict[str, Any]) -> float: """Evaluate the impact of this counterfactual scenario.""" # Implementation will vary based on the specific domain return self.impact_score class MetaLearningStrategy(ReasoningStrategy): """A meta-learning strategy that adapts its reasoning approach based on problem characteristics.""" def __init__(self): self.strategy_patterns = { "analytical": ["analyze", "compare", "evaluate", "measure"], "creative": ["design", "create", "innovate", "imagine"], "systematic": ["organize", "structure", "plan", "implement"], "critical": ["critique", "assess", "validate", "test"] } async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} # Analyze query to determine best reasoning patterns patterns = self._identify_patterns(query.lower()) prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: {', '.join(patterns)} Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} def _identify_patterns(self, query: str) -> List[str]: """Identify which reasoning patterns are most relevant for the query.""" patterns = [] for pattern, keywords in self.strategy_patterns.items(): if any(keyword in query for keyword in keywords): patterns.append(pattern) # Default to analytical if no patterns match if not patterns: patterns = ["analytical"] return patterns class BayesianReasoning(ReasoningStrategy): """Implements Bayesian reasoning for probabilistic analysis.""" def __init__(self, prior_weight: float = 0.3): self.prior_weight = prior_weight async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Generate hypotheses hypotheses = await self._generate_hypotheses(query, context) # Calculate prior probabilities priors = await self._calculate_priors(hypotheses, context) # Update with evidence posteriors = await self._update_with_evidence(hypotheses, priors, context) # Generate final analysis analysis = await self._generate_analysis(posteriors, context) return { "success": True, "answer": analysis["conclusion"], "hypotheses": hypotheses, "priors": priors, "posteriors": posteriors, "confidence": analysis["confidence"], "reasoning_path": analysis["reasoning_path"] } except Exception as e: return {"success": False, "error": str(e)} async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate 3-4 hypotheses for this problem: Query: {query} Context: {json.dumps(context)} For each hypothesis: 1. [Statement]: Clear statement of the hypothesis 2. [Assumptions]: Key assumptions made 3. [Testability]: How it could be tested/verified Format as: [H1] Statement: ... Assumptions: ... Testability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_hypotheses(response["answer"]) async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Calculate prior probabilities for these hypotheses: Context: {json.dumps(context)} Hypotheses: {json.dumps(hypotheses, indent=2)} For each hypothesis, estimate its prior probability (0-1) based on: 1. Alignment with known principles 2. Historical precedent 3. Domain expertise Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Update probabilities with available evidence: Context: {json.dumps(context)} Hypotheses and Priors: {json.dumps(list(zip(hypotheses, priors.values())), indent=2)} Consider: 1. How well each hypothesis explains the evidence 2. Any new evidence from the context 3. Potential conflicts or support between hypotheses Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate final Bayesian analysis: Context: {json.dumps(context)} Posterior Probabilities: {json.dumps(posteriors, indent=2)} Provide: 1. Main conclusion based on highest probability hypotheses 2. Confidence level (0-1) 3. Key reasoning steps taken """ response = await context["groq_api"].predict(prompt) return self._parse_analysis(response["answer"]) def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]: """Parse hypotheses from response.""" hypotheses = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[H'): if current: hypotheses.append(current) current = { "statement": "", "assumptions": "", "testability": "" } elif current: if line.startswith('Statement:'): current["statement"] = line[10:].strip() elif line.startswith('Assumptions:'): current["assumptions"] = line[12:].strip() elif line.startswith('Testability:'): current["testability"] = line[12:].strip() if current: hypotheses.append(current) return hypotheses def _parse_probabilities(self, response: str) -> Dict[str, float]: """Parse probabilities from response.""" probs = {} pattern = r'\[H(\d+)\]:\s*(0\.\d+)' for match in re.finditer(pattern, response): h_num = int(match.group(1)) prob = float(match.group(2)) probs[f"H{h_num}"] = prob return probs def _parse_analysis(self, response: str) -> Dict[str, Any]: """Parse analysis from response.""" lines = response.split('\n') analysis = { "conclusion": "", "confidence": 0.0, "reasoning_path": [] } for line in lines: line = line.strip() if not line: continue if line.startswith('Conclusion:'): analysis["conclusion"] = line[11:].strip() elif line.startswith('Confidence:'): try: analysis["confidence"] = float(line[11:].strip()) except: analysis["confidence"] = 0.5 elif line.startswith('- '): analysis["reasoning_path"].append(line[2:].strip()) return analysis class EmergentReasoning(ReasoningStrategy): """Implements emergent reasoning by analyzing collective patterns and system-level behaviors.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Identify system components components = await self._identify_components(query, context) # Analyze interactions interactions = await self._analyze_interactions(components, context) # Detect emergent patterns patterns = await self._detect_patterns(interactions, context) # Synthesize emergent properties synthesis = await self._synthesize_properties(patterns, context) return { "success": True, "answer": synthesis["conclusion"], "components": components, "interactions": interactions, "patterns": patterns, "emergent_properties": synthesis["properties"], "confidence": synthesis["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _identify_components(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Identify key system components for analysis: Query: {query} Context: {json.dumps(context)} For each component identify: 1. [Name]: Component identifier 2. [Properties]: Key characteristics 3. [Role]: Function in the system 4. [Dependencies]: Related components Format as: [C1] Name: ... Properties: ... Role: ... Dependencies: ... """ response = await context["groq_api"].predict(prompt) return self._parse_components(response["answer"]) async def _analyze_interactions(self, components: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze interactions between components: Components: {json.dumps(components)} Context: {json.dumps(context)} For each interaction describe: 1. [Components]: Participating components 2. [Type]: Nature of interaction 3. [Effects]: Impact on system 4. [Dynamics]: How it changes over time Format as: [I1] Components: ... Type: ... Effects: ... Dynamics: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interactions(response["answer"]) async def _detect_patterns(self, interactions: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Detect emergent patterns from interactions: Interactions: {json.dumps(interactions)} Context: {json.dumps(context)} For each pattern identify: 1. [Pattern]: Description of the pattern 2. [Scale]: At what level it emerges 3. [Conditions]: Required conditions 4. [Stability]: How stable/persistent it is Format as: [P1] Pattern: ... Scale: ... Conditions: ... Stability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_patterns(response["answer"]) async def _synthesize_properties(self, patterns: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Synthesize emergent properties from patterns: Patterns: {json.dumps(patterns)} Context: {json.dumps(context)} Provide: 1. List of emergent properties 2. How they arise from patterns 3. Their significance 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_synthesis(response["answer"]) def _parse_components(self, response: str) -> List[Dict[str, Any]]: """Parse components from response.""" components = [] current_component = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[C'): if current_component: components.append(current_component) current_component = { "name": "", "properties": "", "role": "", "dependencies": [] } elif current_component: if line.startswith('Name:'): current_component["name"] = line[5:].strip() elif line.startswith('Properties:'): current_component["properties"] = line[11:].strip() elif line.startswith('Role:'): current_component["role"] = line[5:].strip() elif line.startswith('Dependencies:'): mode = "dependencies" elif line.startswith("- "): if mode == "dependencies": current_component["dependencies"].append(line[2:].strip()) if current_component: components.append(current_component) return components def _parse_interactions(self, response: str) -> List[Dict[str, Any]]: """Parse interactions from response.""" interactions = [] current_interaction = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_interaction: interactions.append(current_interaction) current_interaction = { "components": "", "type": "", "effects": "", "dynamics": "" } elif current_interaction: if line.startswith('Components:'): current_interaction["components"] = line[11:].strip() elif line.startswith('Type:'): current_interaction["type"] = line[5:].strip() elif line.startswith('Effects:'): current_interaction["effects"] = line[7:].strip() elif line.startswith('Dynamics:'): current_interaction["dynamics"] = line[9:].strip() if current_interaction: interactions.append(current_interaction) return interactions def _parse_patterns(self, response: str) -> List[Dict[str, Any]]: """Parse patterns from response.""" patterns = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[P'): if current_pattern: patterns.append(current_pattern) current_pattern = { "pattern": "", "scale": "", "conditions": "", "stability": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Scale:'): current_pattern["scale"] = line[6:].strip() elif line.startswith('Conditions:'): current_pattern["conditions"] = line[11:].strip() elif line.startswith('Stability:'): current_pattern["stability"] = line[10:].strip() if current_pattern: patterns.append(current_pattern) return patterns def _parse_synthesis(self, response: str) -> Dict[str, Any]: """Parse synthesis from response.""" synthesis = { "properties": [], "conclusion": "", "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Properties:'): mode = "properties" elif line.startswith('Conclusion:'): synthesis["conclusion"] = line[11:].strip() mode = None elif line.startswith('Confidence:'): try: synthesis["confidence"] = float(line[11:].strip()) except: synthesis["confidence"] = 0.5 mode = None elif mode == "properties" and line.startswith('- '): synthesis["properties"].append(line[2:].strip()) return synthesis class QuantumReasoning(ReasoningStrategy): """Implements quantum-inspired reasoning using superposition and entanglement principles.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create superposition of possibilities superposition = await self._create_superposition(query, context) # Analyze entanglements entanglements = await self._analyze_entanglements(superposition, context) # Perform quantum interference interference = await self._quantum_interference(superposition, entanglements, context) # Collapse to solution solution = await self._collapse_to_solution(interference, context) return { "success": True, "answer": solution["conclusion"], "superposition": superposition, "entanglements": entanglements, "interference_patterns": interference, "measurement": solution["measurement"], "confidence": solution["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Create superposition of possible solutions: Query: {query} Context: {json.dumps(context)} For each possibility state: 1. [State]: Description of possibility 2. [Amplitude]: Relative strength (0-1) 3. [Phase]: Relationship to other states 4. [Basis]: Underlying assumptions Format as: [S1] State: ... Amplitude: ... Phase: ... Basis: ... """ response = await context["groq_api"].predict(prompt) return self._parse_superposition(response["answer"]) async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze entanglements between possibilities: Superposition: {json.dumps(superposition)} Context: {json.dumps(context)} For each entanglement describe: 1. [States]: Entangled states 2. [Type]: Nature of entanglement 3. [Strength]: Correlation strength 4. [Impact]: Effect on outcomes Format as: [E1] States: ... Type: ... Strength: ... Impact: ... """ response = await context["groq_api"].predict(prompt) return self._parse_entanglements(response["answer"]) async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Calculate quantum interference patterns: Superposition: {json.dumps(superposition)} Entanglements: {json.dumps(entanglements)} Context: {json.dumps(context)} For each interference pattern: 1. [Pattern]: Description 2. [Amplitude]: Combined strength 3. [Phase]: Combined phase 4. [Effect]: Impact on solution space Format as: [I1] Pattern: ... Amplitude: ... Phase: ... Effect: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interference(response["answer"]) async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Collapse quantum state to final solution: Interference: {json.dumps(interference)} Context: {json.dumps(context)} Provide: 1. Final measured state 2. Measurement confidence 3. Key quantum effects utilized 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_collapse(response["answer"]) def _parse_superposition(self, response: str) -> List[Dict[str, Any]]: """Parse superposition states from response.""" superposition = [] current_state = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current_state: superposition.append(current_state) current_state = { "state": "", "amplitude": 0.0, "phase": "", "basis": "" } elif current_state: if line.startswith('State:'): current_state["state"] = line[6:].strip() elif line.startswith('Amplitude:'): try: current_state["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_state["phase"] = line[6:].strip() elif line.startswith('Basis:'): current_state["basis"] = line[6:].strip() if current_state: superposition.append(current_state) return superposition def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]: """Parse entanglements from response.""" entanglements = [] current_entanglement = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[E'): if current_entanglement: entanglements.append(current_entanglement) current_entanglement = { "states": "", "type": "", "strength": 0.0, "impact": "" } elif current_entanglement: if line.startswith('States:'): current_entanglement["states"] = line[7:].strip() elif line.startswith('Type:'): current_entanglement["type"] = line[5:].strip() elif line.startswith('Strength:'): try: current_entanglement["strength"] = float(line[9:].strip()) except: pass elif line.startswith('Impact:'): current_entanglement["impact"] = line[7:].strip() if current_entanglement: entanglements.append(current_entanglement) return entanglements def _parse_interference(self, response: str) -> List[Dict[str, Any]]: """Parse interference patterns from response.""" interference = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_pattern: interference.append(current_pattern) current_pattern = { "pattern": "", "amplitude": 0.0, "phase": "", "effect": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Amplitude:'): try: current_pattern["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_pattern["phase"] = line[6:].strip() elif line.startswith('Effect:'): current_pattern["effect"] = line[7:].strip() if current_pattern: interference.append(current_pattern) return interference def _parse_collapse(self, response: str) -> Dict[str, Any]: """Parse collapse to solution from response.""" collapse = { "measurement": "", "confidence": 0.0, "quantum_effects": [], "conclusion": "" } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Measurement:'): collapse["measurement"] = line[12:].strip() elif line.startswith('Confidence:'): try: collapse["confidence"] = float(line[11:].strip()) except: collapse["confidence"] = 0.5 elif line.startswith('Quantum Effects:'): mode = "effects" elif mode == "effects" and line.startswith('- '): collapse["quantum_effects"].append(line[2:].strip()) elif line.startswith('Conclusion:'): collapse["conclusion"] = line[11:].strip() return collapse class QuantumInspiredStrategy(ReasoningStrategy): """Implements Quantum-Inspired reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} class NeurosymbolicReasoning(ReasoningStrategy): """Implements neurosymbolic reasoning combining neural and symbolic approaches.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Extract neural features neural_features = await self._extract_neural_features(query) # Generate symbolic rules symbolic_rules = await self._generate_symbolic_rules( neural_features, context ) # Combine neural and symbolic reasoning combined_result = await self._combine_neural_symbolic( neural_features, symbolic_rules, context ) # Update knowledge base self._update_knowledge_base( neural_features, symbolic_rules, combined_result ) return { "success": True, "neural_features": [ { "name": f.name, "associations": f.associations } for f in neural_features ], "symbolic_rules": [ { "condition": r.condition, "action": r.action, "confidence": r.confidence } for r in symbolic_rules ], "combined_result": combined_result } except Exception as e: return {"success": False, "error": str(e)} async def _extract_neural_features(self, query: str) -> List[NeuralFeature]: """Extract neural features from the query.""" try: # Use text generation model to extract features prompt = f""" Extract key features from this query: {query} List each feature with its properties: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) features = [] for line in result.split("\n"): if line.strip(): # Create feature vector using simple embedding vector = np.random.rand(768) # Placeholder feature = NeuralFeature( name=line.strip(), vector=vector ) features.append(feature) return features except Exception as e: return [] async def _generate_symbolic_rules(self, features: List[NeuralFeature], context: Dict[str, Any]) -> List[SymbolicRule]: """Generate symbolic rules based on features.""" try: # Use features to generate rules feature_desc = "\n".join(f.name for f in features) prompt = f""" Given these features: {feature_desc} Generate logical rules in if-then format: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=200, temperature=0.7 ) rules = [] for line in result.split("\n"): if "if" in line.lower() and "then" in line.lower(): parts = line.lower().split("then") condition = parts[0].replace("if", "").strip() action = parts[1].strip() rule = SymbolicRule(condition, action) rules.append(rule) return rules except Exception as e: return [] async def _combine_neural_symbolic(self, features: List[NeuralFeature], rules: List[SymbolicRule], context: Dict[str, Any]) -> Dict[str, Any]: """Combine neural and symbolic reasoning.""" try: # Use neural features to evaluate symbolic rules evaluated_rules = [] for rule in rules: # Calculate confidence based on feature associations confidence = 0.0 for feature in features: if feature.name in rule.condition: confidence += feature.associations.get(rule.action, 0.0) rule.confidence = confidence / len(features) evaluated_rules.append(rule) # Generate combined result prompt = f""" Combine these evaluated rules to generate a solution: Rules: {json.dumps(evaluated_rules, indent=2)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Confidence level (0-1) """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) return { "conclusion": result["answer"], "confidence": 0.8 # Placeholder confidence } except Exception as e: return {} def _update_knowledge_base(self, features: List[NeuralFeature], rules: List[SymbolicRule], result: Dict[str, Any]) -> None: """Update knowledge base with new features and rules.""" # Update feature associations for feature in features: for rule in rules: if feature.name in rule.condition: feature.associations[rule.action] = rule.confidence # Update symbolic rules for rule in rules: rule.update_confidence(result["confidence"]) class MultiModalReasoning(ReasoningStrategy): """Implements multi-modal reasoning across different types of information.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Process different modalities modalities = await self._process_modalities(query, context) # Cross-modal alignment alignment = await self._cross_modal_alignment(modalities, context) # Integrated analysis integration = await self._integrated_analysis(alignment, context) # Generate unified response response = await self._generate_response(integration, context) return { "success": True, "answer": response["conclusion"], "modalities": modalities, "alignment": alignment, "integration": integration, "confidence": response["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: prompt = f""" Process information across modalities: Query: {query} Context: {json.dumps(context)} For each modality analyze: 1. [Type]: Modality type 2. [Content]: Key information 3. [Features]: Important features 4. [Quality]: Information quality Format as: [M1] Type: ... Content: ... Features: ... Quality: ... """ response = await context["groq_api"].predict(prompt) return self._parse_modalities(response["answer"]) async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Align information across different modalities.""" try: # Extract modality types modal_types = list(modalities.keys()) # Initialize alignment results alignments = [] # Process each modality pair for i in range(len(modal_types)): for j in range(i + 1, len(modal_types)): type1, type2 = modal_types[i], modal_types[j] # Get items from each modality items1 = modalities[type1] items2 = modalities[type2] # Find alignments between items for item1 in items1: for item2 in items2: similarity = self._calculate_similarity(item1, item2) if similarity > 0.5: # Threshold for alignment alignments.append({ "type1": type1, "type2": type2, "item1": item1, "item2": item2, "similarity": similarity }) # Sort alignments by similarity alignments.sort(key=lambda x: x["similarity"], reverse=True) return alignments except Exception as e: logging.error(f"Error in cross-modal alignment: {str(e)}") return [] def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float: """Calculate similarity between two items from different modalities.""" try: # Extract content from items content1 = str(item1.get("content", "")) content2 = str(item2.get("content", "")) # Calculate basic similarity (can be enhanced with more sophisticated methods) common_words = set(content1.lower().split()) & set(content2.lower().split()) total_words = set(content1.lower().split()) | set(content2.lower().split()) if not total_words: return 0.0 return len(common_words) / len(total_words) except Exception as e: logging.error(f"Error calculating similarity: {str(e)}") return 0.0 async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Perform integrated multi-modal analysis: Alignment: {json.dumps(alignment)} Context: {json.dumps(context)} For each insight: 1. [Insight]: Key finding 2. [Sources]: Contributing modalities 3. [Support]: Supporting evidence 4. [Confidence]: Confidence level Format as: [I1] Insight: ... Sources: ... Support: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) return self._parse_integration(response["answer"]) async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate unified multi-modal response: Integration: {json.dumps(integration)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Modal contributions 3. Integration benefits 4. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_response(response["answer"]) def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]: """Parse modalities from response.""" modalities = {} current_modality = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[M'): if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) current_modality = { "type": "", "content": "", "features": "", "quality": "" } elif current_modality: if line.startswith('Type:'): current_modality["type"] = line[5:].strip() elif line.startswith('Content:'): current_modality["content"] = line[8:].strip() elif line.startswith('Features:'): current_modality["features"] = line[9:].strip() elif line.startswith('Quality:'): current_modality["quality"] = line[8:].strip() if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) return modalities def _parse_alignment(self, response: str) -> List[Dict[str, Any]]: """Parse alignment from response.""" alignment = [] current_alignment = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[A'): if current_alignment: alignment.append(current_alignment) current_alignment = { "modalities": "", "mapping": "", "confidence": 0.0, "conflicts": [] } elif current_alignment: if line.startswith('Modalities:'): current_alignment["modalities"] = line[11:].strip() elif line.startswith('Mapping:'): current_alignment["mapping"] = line[7:].strip() elif line.startswith('Confidence:'): try: current_alignment["confidence"] = float(line[11:].strip()) except: pass elif line.startswith('Conflicts:'): mode = "conflicts" elif line.startswith("- "): if mode == "conflicts": current_alignment["conflicts"].append(line[2:].strip()) if current_alignment: alignment.append(current_alignment) return alignment def _parse_integration(self, response: str) -> List[Dict[str, Any]]: """Parse integration from response.""" integration = [] current_insight = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_insight: integration.append(current_insight) current_insight = { "insight": "", "sources": "", "support": "", "confidence": 0.0 } elif current_insight: if line.startswith('Insight:'): current_insight["insight"] = line[8:].strip() elif line.startswith('Sources:'): current_insight["sources"] = line[8:].strip() elif line.startswith('Support:'): current_insight["support"] = line[8:].strip() elif line.startswith('Confidence:'): try: current_insight["confidence"] = float(line[11:].strip()) except: pass if current_insight: integration.append(current_insight) return integration def _parse_response(self, response: str) -> Dict[str, Any]: """Parse response from response.""" response_dict = { "conclusion": "", "modal_contributions": [], "integration_benefits": [], "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Conclusion:'): response_dict["conclusion"] = line[11:].strip() elif line.startswith('Modal Contributions:'): mode = "modal" elif line.startswith('Integration Benefits:'): mode = "integration" elif line.startswith('Confidence:'): try: response_dict["confidence"] = float(line[11:].strip()) except: response_dict["confidence"] = 0.5 mode = None elif mode == "modal" and line.startswith('- '): response_dict["modal_contributions"].append(line[2:].strip()) elif mode == "integration" and line.startswith('- '): response_dict["integration_benefits"].append(line[2:].strip()) return response_dict class MetaLearningStrategy(ReasoningStrategy): """A meta-learning strategy that adapts its reasoning approach based on problem characteristics.""" def __init__(self): self.strategy_patterns = { "analytical": ["analyze", "compare", "evaluate", "measure"], "creative": ["design", "create", "innovate", "imagine"], "systematic": ["organize", "structure", "plan", "implement"], "critical": ["critique", "assess", "validate", "test"] } async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} # Analyze query to determine best reasoning patterns patterns = self._identify_patterns(query.lower()) prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: {', '.join(patterns)} Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} def _identify_patterns(self, query: str) -> List[str]: """Identify which reasoning patterns are most relevant for the query.""" patterns = [] for pattern, keywords in self.strategy_patterns.items(): if any(keyword in query for keyword in keywords): patterns.append(pattern) # Default to analytical if no patterns match if not patterns: patterns = ["analytical"] return patterns class BayesianReasoning(ReasoningStrategy): """Implements Bayesian reasoning for probabilistic analysis.""" def __init__(self, prior_weight: float = 0.3): self.prior_weight = prior_weight async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Generate hypotheses hypotheses = await self._generate_hypotheses(query, context) # Calculate prior probabilities priors = await self._calculate_priors(hypotheses, context) # Update with evidence posteriors = await self._update_with_evidence(hypotheses, priors, context) # Generate final analysis analysis = await self._generate_analysis(posteriors, context) return { "success": True, "answer": analysis["conclusion"], "hypotheses": hypotheses, "priors": priors, "posteriors": posteriors, "confidence": analysis["confidence"], "reasoning_path": analysis["reasoning_path"] } except Exception as e: return {"success": False, "error": str(e)} async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate 3-4 hypotheses for this problem: Query: {query} Context: {json.dumps(context)} For each hypothesis: 1. [Statement]: Clear statement of the hypothesis 2. [Assumptions]: Key assumptions made 3. [Testability]: How it could be tested/verified Format as: [H1] Statement: ... Assumptions: ... Testability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_hypotheses(response["answer"]) async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Calculate prior probabilities for these hypotheses: Context: {json.dumps(context)} Hypotheses: {json.dumps(hypotheses, indent=2)} For each hypothesis, estimate its prior probability (0-1) based on: 1. Alignment with known principles 2. Historical precedent 3. Domain expertise Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Update probabilities with available evidence: Context: {json.dumps(context)} Hypotheses and Priors: {json.dumps(list(zip(hypotheses, priors.values())), indent=2)} Consider: 1. How well each hypothesis explains the evidence 2. Any new evidence from the context 3. Potential conflicts or support between hypotheses Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate final Bayesian analysis: Context: {json.dumps(context)} Posterior Probabilities: {json.dumps(posteriors, indent=2)} Provide: 1. Main conclusion based on highest probability hypotheses 2. Confidence level (0-1) 3. Key reasoning steps taken """ response = await context["groq_api"].predict(prompt) return self._parse_analysis(response["answer"]) def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]: """Parse hypotheses from response.""" hypotheses = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[H'): if current: hypotheses.append(current) current = { "statement": "", "assumptions": "", "testability": "" } elif current: if line.startswith('Statement:'): current["statement"] = line[10:].strip() elif line.startswith('Assumptions:'): current["assumptions"] = line[12:].strip() elif line.startswith('Testability:'): current["testability"] = line[12:].strip() if current: hypotheses.append(current) return hypotheses def _parse_probabilities(self, response: str) -> Dict[str, float]: """Parse probabilities from response.""" probs = {} pattern = r'\[H(\d+)\]:\s*(0\.\d+)' for match in re.finditer(pattern, response): h_num = int(match.group(1)) prob = float(match.group(2)) probs[f"H{h_num}"] = prob return probs def _parse_analysis(self, response: str) -> Dict[str, Any]: """Parse analysis from response.""" lines = response.split('\n') analysis = { "conclusion": "", "confidence": 0.0, "reasoning_path": [] } for line in lines: line = line.strip() if not line: continue if line.startswith('Conclusion:'): analysis["conclusion"] = line[11:].strip() elif line.startswith('Confidence:'): try: analysis["confidence"] = float(line[11:].strip()) except: analysis["confidence"] = 0.5 elif line.startswith('- '): analysis["reasoning_path"].append(line[2:].strip()) return analysis class EmergentReasoning(ReasoningStrategy): """Implements emergent reasoning by analyzing collective patterns and system-level behaviors.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Identify system components components = await self._identify_components(query, context) # Analyze interactions interactions = await self._analyze_interactions(components, context) # Detect emergent patterns patterns = await self._detect_patterns(interactions, context) # Synthesize emergent properties synthesis = await self._synthesize_properties(patterns, context) return { "success": True, "answer": synthesis["conclusion"], "components": components, "interactions": interactions, "patterns": patterns, "emergent_properties": synthesis["properties"], "confidence": synthesis["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _identify_components(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Identify key system components for analysis: Query: {query} Context: {json.dumps(context)} For each component identify: 1. [Name]: Component identifier 2. [Properties]: Key characteristics 3. [Role]: Function in the system 4. [Dependencies]: Related components Format as: [C1] Name: ... Properties: ... Role: ... Dependencies: ... """ response = await context["groq_api"].predict(prompt) return self._parse_components(response["answer"]) async def _analyze_interactions(self, components: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze interactions between components: Components: {json.dumps(components)} Context: {json.dumps(context)} For each interaction describe: 1. [Components]: Participating components 2. [Type]: Nature of interaction 3. [Effects]: Impact on system 4. [Dynamics]: How it changes over time Format as: [I1] Components: ... Type: ... Effects: ... Dynamics: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interactions(response["answer"]) async def _detect_patterns(self, interactions: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Detect emergent patterns from interactions: Interactions: {json.dumps(interactions)} Context: {json.dumps(context)} For each pattern identify: 1. [Pattern]: Description of the pattern 2. [Scale]: At what level it emerges 3. [Conditions]: Required conditions 4. [Stability]: How stable/persistent it is Format as: [P1] Pattern: ... Scale: ... Conditions: ... Stability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_patterns(response["answer"]) async def _synthesize_properties(self, patterns: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Synthesize emergent properties from patterns: Patterns: {json.dumps(patterns)} Context: {json.dumps(context)} Provide: 1. List of emergent properties 2. How they arise from patterns 3. Their significance 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_synthesis(response["answer"]) def _parse_components(self, response: str) -> List[Dict[str, Any]]: """Parse components from response.""" components = [] current_component = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[C'): if current_component: components.append(current_component) current_component = { "name": "", "properties": "", "role": "", "dependencies": [] } elif current_component: if line.startswith('Name:'): current_component["name"] = line[5:].strip() elif line.startswith('Properties:'): current_component["properties"] = line[11:].strip() elif line.startswith('Role:'): current_component["role"] = line[5:].strip() elif line.startswith('Dependencies:'): mode = "dependencies" elif line.startswith("- "): if mode == "dependencies": current_component["dependencies"].append(line[2:].strip()) if current_component: components.append(current_component) return components def _parse_interactions(self, response: str) -> List[Dict[str, Any]]: """Parse interactions from response.""" interactions = [] current_interaction = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_interaction: interactions.append(current_interaction) current_interaction = { "components": "", "type": "", "effects": "", "dynamics": "" } elif current_interaction: if line.startswith('Components:'): current_interaction["components"] = line[11:].strip() elif line.startswith('Type:'): current_interaction["type"] = line[5:].strip() elif line.startswith('Effects:'): current_interaction["effects"] = line[7:].strip() elif line.startswith('Dynamics:'): current_interaction["dynamics"] = line[9:].strip() if current_interaction: interactions.append(current_interaction) return interactions def _parse_patterns(self, response: str) -> List[Dict[str, Any]]: """Parse patterns from response.""" patterns = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[P'): if current_pattern: patterns.append(current_pattern) current_pattern = { "pattern": "", "scale": "", "conditions": "", "stability": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Scale:'): current_pattern["scale"] = line[6:].strip() elif line.startswith('Conditions:'): current_pattern["conditions"] = line[11:].strip() elif line.startswith('Stability:'): current_pattern["stability"] = line[10:].strip() if current_pattern: patterns.append(current_pattern) return patterns def _parse_synthesis(self, response: str) -> Dict[str, Any]: """Parse synthesis from response.""" synthesis = { "properties": [], "conclusion": "", "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Properties:'): mode = "properties" elif line.startswith('Conclusion:'): synthesis["conclusion"] = line[11:].strip() mode = None elif line.startswith('Confidence:'): try: synthesis["confidence"] = float(line[11:].strip()) except: synthesis["confidence"] = 0.5 mode = None elif mode == "properties" and line.startswith('- '): synthesis["properties"].append(line[2:].strip()) return synthesis class QuantumReasoning(ReasoningStrategy): """Implements quantum-inspired reasoning using superposition and entanglement principles.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create superposition of possibilities superposition = await self._create_superposition(query, context) # Analyze entanglements entanglements = await self._analyze_entanglements(superposition, context) # Perform quantum interference interference = await self._quantum_interference(superposition, entanglements, context) # Collapse to solution solution = await self._collapse_to_solution(interference, context) return { "success": True, "answer": solution["conclusion"], "superposition": superposition, "entanglements": entanglements, "interference_patterns": interference, "measurement": solution["measurement"], "confidence": solution["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Create superposition of possible solutions: Query: {query} Context: {json.dumps(context)} For each possibility state: 1. [State]: Description of possibility 2. [Amplitude]: Relative strength (0-1) 3. [Phase]: Relationship to other states 4. [Basis]: Underlying assumptions Format as: [S1] State: ... Amplitude: ... Phase: ... Basis: ... """ response = await context["groq_api"].predict(prompt) return self._parse_superposition(response["answer"]) async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze entanglements between possibilities: Superposition: {json.dumps(superposition)} Context: {json.dumps(context)} For each entanglement describe: 1. [States]: Entangled states 2. [Type]: Nature of entanglement 3. [Strength]: Correlation strength 4. [Impact]: Effect on outcomes Format as: [E1] States: ... Type: ... Strength: ... Impact: ... """ response = await context["groq_api"].predict(prompt) return self._parse_entanglements(response["answer"]) async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Calculate quantum interference patterns: Superposition: {json.dumps(superposition)} Entanglements: {json.dumps(entanglements)} Context: {json.dumps(context)} For each interference pattern: 1. [Pattern]: Description 2. [Amplitude]: Combined strength 3. [Phase]: Combined phase 4. [Effect]: Impact on solution space Format as: [I1] Pattern: ... Amplitude: ... Phase: ... Effect: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interference(response["answer"]) async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Collapse quantum state to final solution: Interference: {json.dumps(interference)} Context: {json.dumps(context)} Provide: 1. Final measured state 2. Measurement confidence 3. Key quantum effects utilized 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_collapse(response["answer"]) def _parse_superposition(self, response: str) -> List[Dict[str, Any]]: """Parse superposition states from response.""" superposition = [] current_state = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current_state: superposition.append(current_state) current_state = { "state": "", "amplitude": 0.0, "phase": "", "basis": "" } elif current_state: if line.startswith('State:'): current_state["state"] = line[6:].strip() elif line.startswith('Amplitude:'): try: current_state["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_state["phase"] = line[6:].strip() elif line.startswith('Basis:'): current_state["basis"] = line[6:].strip() if current_state: superposition.append(current_state) return superposition def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]: """Parse entanglements from response.""" entanglements = [] current_entanglement = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[E'): if current_entanglement: entanglements.append(current_entanglement) current_entanglement = { "states": "", "type": "", "strength": 0.0, "impact": "" } elif current_entanglement: if line.startswith('States:'): current_entanglement["states"] = line[7:].strip() elif line.startswith('Type:'): current_entanglement["type"] = line[5:].strip() elif line.startswith('Strength:'): try: current_entanglement["strength"] = float(line[9:].strip()) except: pass elif line.startswith('Impact:'): current_entanglement["impact"] = line[7:].strip() if current_entanglement: entanglements.append(current_entanglement) return entanglements def _parse_interference(self, response: str) -> List[Dict[str, Any]]: """Parse interference patterns from response.""" interference = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_pattern: interference.append(current_pattern) current_pattern = { "pattern": "", "amplitude": 0.0, "phase": "", "effect": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Amplitude:'): try: current_pattern["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_pattern["phase"] = line[6:].strip() elif line.startswith('Effect:'): current_pattern["effect"] = line[7:].strip() if current_pattern: interference.append(current_pattern) return interference def _parse_collapse(self, response: str) -> Dict[str, Any]: """Parse collapse to solution from response.""" collapse = { "measurement": "", "confidence": 0.0, "quantum_effects": [], "conclusion": "" } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Measurement:'): collapse["measurement"] = line[12:].strip() elif line.startswith('Confidence:'): try: collapse["confidence"] = float(line[11:].strip()) except: collapse["confidence"] = 0.5 elif line.startswith('Quantum Effects:'): mode = "effects" elif mode == "effects" and line.startswith('- '): collapse["quantum_effects"].append(line[2:].strip()) elif line.startswith('Conclusion:'): collapse["conclusion"] = line[11:].strip() return collapse class QuantumInspiredStrategy(ReasoningStrategy): """Implements Quantum-Inspired reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} class NeurosymbolicReasoning(ReasoningStrategy): """Implements neurosymbolic reasoning combining neural and symbolic approaches.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Extract neural features neural_features = await self._extract_neural_features(query) # Generate symbolic rules symbolic_rules = await self._generate_symbolic_rules( neural_features, context ) # Combine neural and symbolic reasoning combined_result = await self._combine_neural_symbolic( neural_features, symbolic_rules, context ) # Update knowledge base self._update_knowledge_base( neural_features, symbolic_rules, combined_result ) return { "success": True, "neural_features": [ { "name": f.name, "associations": f.associations } for f in neural_features ], "symbolic_rules": [ { "condition": r.condition, "action": r.action, "confidence": r.confidence } for r in symbolic_rules ], "combined_result": combined_result } except Exception as e: return {"success": False, "error": str(e)} async def _extract_neural_features(self, query: str) -> List[NeuralFeature]: """Extract neural features from the query.""" try: # Use text generation model to extract features prompt = f""" Extract key features from this query: {query} List each feature with its properties: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) features = [] for line in result.split("\n"): if line.strip(): # Create feature vector using simple embedding vector = np.random.rand(768) # Placeholder feature = NeuralFeature( name=line.strip(), vector=vector ) features.append(feature) return features except Exception as e: return [] async def _generate_symbolic_rules(self, features: List[NeuralFeature], context: Dict[str, Any]) -> List[SymbolicRule]: """Generate symbolic rules based on features.""" try: # Use features to generate rules feature_desc = "\n".join(f.name for f in features) prompt = f""" Given these features: {feature_desc} Generate logical rules in if-then format: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=200, temperature=0.7 ) rules = [] for line in result.split("\n"): if "if" in line.lower() and "then" in line.lower(): parts = line.lower().split("then") condition = parts[0].replace("if", "").strip() action = parts[1].strip() rule = SymbolicRule(condition, action) rules.append(rule) return rules except Exception as e: return [] async def _combine_neural_symbolic(self, features: List[NeuralFeature], rules: List[SymbolicRule], context: Dict[str, Any]) -> Dict[str, Any]: """Combine neural and symbolic reasoning.""" try: # Use neural features to evaluate symbolic rules evaluated_rules = [] for rule in rules: # Calculate confidence based on feature associations confidence = 0.0 for feature in features: if feature.name in rule.condition: confidence += feature.associations.get(rule.action, 0.0) rule.confidence = confidence / len(features) evaluated_rules.append(rule) # Generate combined result prompt = f""" Combine these evaluated rules to generate a solution: Rules: {json.dumps(evaluated_rules, indent=2)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Confidence level (0-1) """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) return { "conclusion": result["answer"], "confidence": 0.8 # Placeholder confidence } except Exception as e: return {} def _update_knowledge_base(self, features: List[NeuralFeature], rules: List[SymbolicRule], result: Dict[str, Any]) -> None: """Update knowledge base with new features and rules.""" # Update feature associations for feature in features: for rule in rules: if feature.name in rule.condition: feature.associations[rule.action] = rule.confidence # Update symbolic rules for rule in rules: rule.update_confidence(result["confidence"]) class MultiModalReasoning(ReasoningStrategy): """Implements multi-modal reasoning across different types of information.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Process different modalities modalities = await self._process_modalities(query, context) # Cross-modal alignment alignment = await self._cross_modal_alignment(modalities, context) # Integrated analysis integration = await self._integrated_analysis(alignment, context) # Generate unified response response = await self._generate_response(integration, context) return { "success": True, "answer": response["conclusion"], "modalities": modalities, "alignment": alignment, "integration": integration, "confidence": response["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: prompt = f""" Process information across modalities: Query: {query} Context: {json.dumps(context)} For each modality analyze: 1. [Type]: Modality type 2. [Content]: Key information 3. [Features]: Important features 4. [Quality]: Information quality Format as: [M1] Type: ... Content: ... Features: ... Quality: ... """ response = await context["groq_api"].predict(prompt) return self._parse_modalities(response["answer"]) async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Align information across different modalities.""" try: # Extract modality types modal_types = list(modalities.keys()) # Initialize alignment results alignments = [] # Process each modality pair for i in range(len(modal_types)): for j in range(i + 1, len(modal_types)): type1, type2 = modal_types[i], modal_types[j] # Get items from each modality items1 = modalities[type1] items2 = modalities[type2] # Find alignments between items for item1 in items1: for item2 in items2: similarity = self._calculate_similarity(item1, item2) if similarity > 0.5: # Threshold for alignment alignments.append({ "type1": type1, "type2": type2, "item1": item1, "item2": item2, "similarity": similarity }) # Sort alignments by similarity alignments.sort(key=lambda x: x["similarity"], reverse=True) return alignments except Exception as e: logging.error(f"Error in cross-modal alignment: {str(e)}") return [] def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float: """Calculate similarity between two items from different modalities.""" try: # Extract content from items content1 = str(item1.get("content", "")) content2 = str(item2.get("content", "")) # Calculate basic similarity (can be enhanced with more sophisticated methods) common_words = set(content1.lower().split()) & set(content2.lower().split()) total_words = set(content1.lower().split()) | set(content2.lower().split()) if not total_words: return 0.0 return len(common_words) / len(total_words) except Exception as e: logging.error(f"Error calculating similarity: {str(e)}") return 0.0 async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Perform integrated multi-modal analysis: Alignment: {json.dumps(alignment)} Context: {json.dumps(context)} For each insight: 1. [Insight]: Key finding 2. [Sources]: Contributing modalities 3. [Support]: Supporting evidence 4. [Confidence]: Confidence level Format as: [I1] Insight: ... Sources: ... Support: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) return self._parse_integration(response["answer"]) async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate unified multi-modal response: Integration: {json.dumps(integration)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Modal contributions 3. Integration benefits 4. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_response(response["answer"]) def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]: """Parse modalities from response.""" modalities = {} current_modality = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[M'): if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) current_modality = { "type": "", "content": "", "features": "", "quality": "" } elif current_modality: if line.startswith('Type:'): current_modality["type"] = line[5:].strip() elif line.startswith('Content:'): current_modality["content"] = line[8:].strip() elif line.startswith('Features:'): current_modality["features"] = line[9:].strip() elif line.startswith('Quality:'): current_modality["quality"] = line[8:].strip() if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) return modalities def _parse_alignment(self, response: str) -> List[Dict[str, Any]]: """Parse alignment from response.""" alignment = [] current_alignment = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[A'): if current_alignment: alignment.append(current_alignment) current_alignment = { "modalities": "", "mapping": "", "confidence": 0.0, "conflicts": [] } elif current_alignment: if line.startswith('Modalities:'): current_alignment["modalities"] = line[11:].strip() elif line.startswith('Mapping:'): current_alignment["mapping"] = line[7:].strip() elif line.startswith('Confidence:'): try: current_alignment["confidence"] = float(line[11:].strip()) except: pass elif line.startswith('Conflicts:'): mode = "conflicts" elif line.startswith("- "): if mode == "conflicts": current_alignment["conflicts"].append(line[2:].strip()) if current_alignment: alignment.append(current_alignment) return alignment def _parse_integration(self, response: str) -> List[Dict[str, Any]]: """Parse integration from response.""" integration = [] current_insight = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_insight: integration.append(current_insight) current_insight = { "insight": "", "sources": "", "support": "", "confidence": 0.0 } elif current_insight: if line.startswith('Insight:'): current_insight["insight"] = line[8:].strip() elif line.startswith('Sources:'): current_insight["sources"] = line[8:].strip() elif line.startswith('Support:'): current_insight["support"] = line[8:].strip() elif line.startswith('Confidence:'): try: current_insight["confidence"] = float(line[11:].strip()) except: pass if current_insight: integration.append(current_insight) return integration def _parse_response(self, response: str) -> Dict[str, Any]: """Parse response from response.""" response_dict = { "conclusion": "", "modal_contributions": [], "integration_benefits": [], "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Conclusion:'): response_dict["conclusion"] = line[11:].strip() elif line.startswith('Modal Contributions:'): mode = "modal" elif line.startswith('Integration Benefits:'): mode = "integration" elif line.startswith('Confidence:'): try: response_dict["confidence"] = float(line[11:].strip()) except: response_dict["confidence"] = 0.5 mode = None elif mode == "modal" and line.startswith('- '): response_dict["modal_contributions"].append(line[2:].strip()) elif mode == "integration" and line.startswith('- '): response_dict["integration_benefits"].append(line[2:].strip()) return response_dict class MetaLearningStrategy(ReasoningStrategy): """A meta-learning strategy that adapts its reasoning approach based on problem characteristics.""" def __init__(self): self.strategy_patterns = { "analytical": ["analyze", "compare", "evaluate", "measure"], "creative": ["design", "create", "innovate", "imagine"], "systematic": ["organize", "structure", "plan", "implement"], "critical": ["critique", "assess", "validate", "test"] } async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} # Analyze query to determine best reasoning patterns patterns = self._identify_patterns(query.lower()) prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: {', '.join(patterns)} Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} def _identify_patterns(self, query: str) -> List[str]: """Identify which reasoning patterns are most relevant for the query.""" patterns = [] for pattern, keywords in self.strategy_patterns.items(): if any(keyword in query for keyword in keywords): patterns.append(pattern) # Default to analytical if no patterns match if not patterns: patterns = ["analytical"] return patterns class BayesianReasoning(ReasoningStrategy): """Implements Bayesian reasoning for probabilistic analysis.""" def __init__(self, prior_weight: float = 0.3): self.prior_weight = prior_weight async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Generate hypotheses hypotheses = await self._generate_hypotheses(query, context) # Calculate prior probabilities priors = await self._calculate_priors(hypotheses, context) # Update with evidence posteriors = await self._update_with_evidence(hypotheses, priors, context) # Generate final analysis analysis = await self._generate_analysis(posteriors, context) return { "success": True, "answer": analysis["conclusion"], "hypotheses": hypotheses, "priors": priors, "posteriors": posteriors, "confidence": analysis["confidence"], "reasoning_path": analysis["reasoning_path"] } except Exception as e: return {"success": False, "error": str(e)} async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate 3-4 hypotheses for this problem: Query: {query} Context: {json.dumps(context)} For each hypothesis: 1. [Statement]: Clear statement of the hypothesis 2. [Assumptions]: Key assumptions made 3. [Testability]: How it could be tested/verified Format as: [H1] Statement: ... Assumptions: ... Testability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_hypotheses(response["answer"]) async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Calculate prior probabilities for these hypotheses: Context: {json.dumps(context)} Hypotheses: {json.dumps(hypotheses, indent=2)} For each hypothesis, estimate its prior probability (0-1) based on: 1. Alignment with known principles 2. Historical precedent 3. Domain expertise Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Update probabilities with available evidence: Context: {json.dumps(context)} Hypotheses and Priors: {json.dumps(list(zip(hypotheses, priors.values())), indent=2)} Consider: 1. How well each hypothesis explains the evidence 2. Any new evidence from the context 3. Potential conflicts or support between hypotheses Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate final Bayesian analysis: Context: {json.dumps(context)} Posterior Probabilities: {json.dumps(posteriors, indent=2)} Provide: 1. Main conclusion based on highest probability hypotheses 2. Confidence level (0-1) 3. Key reasoning steps taken """ response = await context["groq_api"].predict(prompt) return self._parse_analysis(response["answer"]) def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]: """Parse hypotheses from response.""" hypotheses = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[H'): if current: hypotheses.append(current) current = { "statement": "", "assumptions": "", "testability": "" } elif current: if line.startswith('Statement:'): current["statement"] = line[10:].strip() elif line.startswith('Assumptions:'): current["assumptions"] = line[12:].strip() elif line.startswith('Testability:'): current["testability"] = line[12:].strip() if current: hypotheses.append(current) return hypotheses def _parse_probabilities(self, response: str) -> Dict[str, float]: """Parse probabilities from response.""" probs = {} pattern = r'\[H(\d+)\]:\s*(0\.\d+)' for match in re.finditer(pattern, response): h_num = int(match.group(1)) prob = float(match.group(2)) probs[f"H{h_num}"] = prob return probs def _parse_analysis(self, response: str) -> Dict[str, Any]: """Parse analysis from response.""" lines = response.split('\n') analysis = { "conclusion": "", "confidence": 0.0, "reasoning_path": [] } for line in lines: line = line.strip() if not line: continue if line.startswith('Conclusion:'): analysis["conclusion"] = line[11:].strip() elif line.startswith('Confidence:'): try: analysis["confidence"] = float(line[11:].strip()) except: analysis["confidence"] = 0.5 elif line.startswith('- '): analysis["reasoning_path"].append(line[2:].strip()) return analysis class EmergentReasoning(ReasoningStrategy): """Implements emergent reasoning by analyzing collective patterns and system-level behaviors.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Identify system components components = await self._identify_components(query, context) # Analyze interactions interactions = await self._analyze_interactions(components, context) # Detect emergent patterns patterns = await self._detect_patterns(interactions, context) # Synthesize emergent properties synthesis = await self._synthesize_properties(patterns, context) return { "success": True, "answer": synthesis["conclusion"], "components": components, "interactions": interactions, "patterns": patterns, "emergent_properties": synthesis["properties"], "confidence": synthesis["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _identify_components(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Identify key system components for analysis: Query: {query} Context: {json.dumps(context)} For each component identify: 1. [Name]: Component identifier 2. [Properties]: Key characteristics 3. [Role]: Function in the system 4. [Dependencies]: Related components Format as: [C1] Name: ... Properties: ... Role: ... Dependencies: ... """ response = await context["groq_api"].predict(prompt) return self._parse_components(response["answer"]) async def _analyze_interactions(self, components: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze interactions between components: Components: {json.dumps(components)} Context: {json.dumps(context)} For each interaction describe: 1. [Components]: Participating components 2. [Type]: Nature of interaction 3. [Effects]: Impact on system 4. [Dynamics]: How it changes over time Format as: [I1] Components: ... Type: ... Effects: ... Dynamics: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interactions(response["answer"]) async def _detect_patterns(self, interactions: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Detect emergent patterns from interactions: Interactions: {json.dumps(interactions)} Context: {json.dumps(context)} For each pattern identify: 1. [Pattern]: Description of the pattern 2. [Scale]: At what level it emerges 3. [Conditions]: Required conditions 4. [Stability]: How stable/persistent it is Format as: [P1] Pattern: ... Scale: ... Conditions: ... Stability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_patterns(response["answer"]) async def _synthesize_properties(self, patterns: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Synthesize emergent properties from patterns: Patterns: {json.dumps(patterns)} Context: {json.dumps(context)} Provide: 1. List of emergent properties 2. How they arise from patterns 3. Their significance 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_synthesis(response["answer"]) def _parse_components(self, response: str) -> List[Dict[str, Any]]: """Parse components from response.""" components = [] current_component = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[C'): if current_component: components.append(current_component) current_component = { "name": "", "properties": "", "role": "", "dependencies": [] } elif current_component: if line.startswith('Name:'): current_component["name"] = line[5:].strip() elif line.startswith('Properties:'): current_component["properties"] = line[11:].strip() elif line.startswith('Role:'): current_component["role"] = line[5:].strip() elif line.startswith('Dependencies:'): mode = "dependencies" elif line.startswith("- "): if mode == "dependencies": current_component["dependencies"].append(line[2:].strip()) if current_component: components.append(current_component) return components def _parse_interactions(self, response: str) -> List[Dict[str, Any]]: """Parse interactions from response.""" interactions = [] current_interaction = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_interaction: interactions.append(current_interaction) current_interaction = { "components": "", "type": "", "effects": "", "dynamics": "" } elif current_interaction: if line.startswith('Components:'): current_interaction["components"] = line[11:].strip() elif line.startswith('Type:'): current_interaction["type"] = line[5:].strip() elif line.startswith('Effects:'): current_interaction["effects"] = line[7:].strip() elif line.startswith('Dynamics:'): current_interaction["dynamics"] = line[9:].strip() if current_interaction: interactions.append(current_interaction) return interactions def _parse_patterns(self, response: str) -> List[Dict[str, Any]]: """Parse patterns from response.""" patterns = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[P'): if current_pattern: patterns.append(current_pattern) current_pattern = { "pattern": "", "scale": "", "conditions": "", "stability": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Scale:'): current_pattern["scale"] = line[6:].strip() elif line.startswith('Conditions:'): current_pattern["conditions"] = line[11:].strip() elif line.startswith('Stability:'): current_pattern["stability"] = line[10:].strip() if current_pattern: patterns.append(current_pattern) return patterns def _parse_synthesis(self, response: str) -> Dict[str, Any]: """Parse synthesis from response.""" synthesis = { "properties": [], "conclusion": "", "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Properties:'): mode = "properties" elif line.startswith('Conclusion:'): synthesis["conclusion"] = line[11:].strip() mode = None elif line.startswith('Confidence:'): try: synthesis["confidence"] = float(line[11:].strip()) except: synthesis["confidence"] = 0.5 mode = None elif mode == "properties" and line.startswith('- '): synthesis["properties"].append(line[2:].strip()) return synthesis class QuantumReasoning(ReasoningStrategy): """Implements quantum-inspired reasoning using superposition and entanglement principles.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create superposition of possibilities superposition = await self._create_superposition(query, context) # Analyze entanglements entanglements = await self._analyze_entanglements(superposition, context) # Perform quantum interference interference = await self._quantum_interference(superposition, entanglements, context) # Collapse to solution solution = await self._collapse_to_solution(interference, context) return { "success": True, "answer": solution["conclusion"], "superposition": superposition, "entanglements": entanglements, "interference_patterns": interference, "measurement": solution["measurement"], "confidence": solution["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Create superposition of possible solutions: Query: {query} Context: {json.dumps(context)} For each possibility state: 1. [State]: Description of possibility 2. [Amplitude]: Relative strength (0-1) 3. [Phase]: Relationship to other states 4. [Basis]: Underlying assumptions Format as: [S1] State: ... Amplitude: ... Phase: ... Basis: ... """ response = await context["groq_api"].predict(prompt) return self._parse_superposition(response["answer"]) async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Analyze entanglements between possibilities: Superposition: {json.dumps(superposition)} Context: {json.dumps(context)} For each entanglement describe: 1. [States]: Entangled states 2. [Type]: Nature of entanglement 3. [Strength]: Correlation strength 4. [Impact]: Effect on outcomes Format as: [E1] States: ... Type: ... Strength: ... Impact: ... """ response = await context["groq_api"].predict(prompt) return self._parse_entanglements(response["answer"]) async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Calculate quantum interference patterns: Superposition: {json.dumps(superposition)} Entanglements: {json.dumps(entanglements)} Context: {json.dumps(context)} For each interference pattern: 1. [Pattern]: Description 2. [Amplitude]: Combined strength 3. [Phase]: Combined phase 4. [Effect]: Impact on solution space Format as: [I1] Pattern: ... Amplitude: ... Phase: ... Effect: ... """ response = await context["groq_api"].predict(prompt) return self._parse_interference(response["answer"]) async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Collapse quantum state to final solution: Interference: {json.dumps(interference)} Context: {json.dumps(context)} Provide: 1. Final measured state 2. Measurement confidence 3. Key quantum effects utilized 4. Overall conclusion 5. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_collapse(response["answer"]) def _parse_superposition(self, response: str) -> List[Dict[str, Any]]: """Parse superposition states from response.""" superposition = [] current_state = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[S'): if current_state: superposition.append(current_state) current_state = { "state": "", "amplitude": 0.0, "phase": "", "basis": "" } elif current_state: if line.startswith('State:'): current_state["state"] = line[6:].strip() elif line.startswith('Amplitude:'): try: current_state["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_state["phase"] = line[6:].strip() elif line.startswith('Basis:'): current_state["basis"] = line[6:].strip() if current_state: superposition.append(current_state) return superposition def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]: """Parse entanglements from response.""" entanglements = [] current_entanglement = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[E'): if current_entanglement: entanglements.append(current_entanglement) current_entanglement = { "states": "", "type": "", "strength": 0.0, "impact": "" } elif current_entanglement: if line.startswith('States:'): current_entanglement["states"] = line[7:].strip() elif line.startswith('Type:'): current_entanglement["type"] = line[5:].strip() elif line.startswith('Strength:'): try: current_entanglement["strength"] = float(line[9:].strip()) except: pass elif line.startswith('Impact:'): current_entanglement["impact"] = line[7:].strip() if current_entanglement: entanglements.append(current_entanglement) return entanglements def _parse_interference(self, response: str) -> List[Dict[str, Any]]: """Parse interference patterns from response.""" interference = [] current_pattern = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_pattern: interference.append(current_pattern) current_pattern = { "pattern": "", "amplitude": 0.0, "phase": "", "effect": "" } elif current_pattern: if line.startswith('Pattern:'): current_pattern["pattern"] = line[8:].strip() elif line.startswith('Amplitude:'): try: current_pattern["amplitude"] = float(line[10:].strip()) except: pass elif line.startswith('Phase:'): current_pattern["phase"] = line[6:].strip() elif line.startswith('Effect:'): current_pattern["effect"] = line[7:].strip() if current_pattern: interference.append(current_pattern) return interference def _parse_collapse(self, response: str) -> Dict[str, Any]: """Parse collapse to solution from response.""" collapse = { "measurement": "", "confidence": 0.0, "quantum_effects": [], "conclusion": "" } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Measurement:'): collapse["measurement"] = line[12:].strip() elif line.startswith('Confidence:'): try: collapse["confidence"] = float(line[11:].strip()) except: collapse["confidence"] = 0.5 elif line.startswith('Quantum Effects:'): mode = "effects" elif mode == "effects" and line.startswith('- '): collapse["quantum_effects"].append(line[2:].strip()) elif line.startswith('Conclusion:'): collapse["conclusion"] = line[11:].strip() return collapse class QuantumInspiredStrategy(ReasoningStrategy): """Implements Quantum-Inspired reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)} class NeurosymbolicReasoning(ReasoningStrategy): """Implements neurosymbolic reasoning combining neural and symbolic approaches.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Extract neural features neural_features = await self._extract_neural_features(query) # Generate symbolic rules symbolic_rules = await self._generate_symbolic_rules( neural_features, context ) # Combine neural and symbolic reasoning combined_result = await self._combine_neural_symbolic( neural_features, symbolic_rules, context ) # Update knowledge base self._update_knowledge_base( neural_features, symbolic_rules, combined_result ) return { "success": True, "neural_features": [ { "name": f.name, "associations": f.associations } for f in neural_features ], "symbolic_rules": [ { "condition": r.condition, "action": r.action, "confidence": r.confidence } for r in symbolic_rules ], "combined_result": combined_result } except Exception as e: return {"success": False, "error": str(e)} async def _extract_neural_features(self, query: str) -> List[NeuralFeature]: """Extract neural features from the query.""" try: # Use text generation model to extract features prompt = f""" Extract key features from this query: {query} List each feature with its properties: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) features = [] for line in result.split("\n"): if line.strip(): # Create feature vector using simple embedding vector = np.random.rand(768) # Placeholder feature = NeuralFeature( name=line.strip(), vector=vector ) features.append(feature) return features except Exception as e: return [] async def _generate_symbolic_rules(self, features: List[NeuralFeature], context: Dict[str, Any]) -> List[SymbolicRule]: """Generate symbolic rules based on features.""" try: # Use features to generate rules feature_desc = "\n".join(f.name for f in features) prompt = f""" Given these features: {feature_desc} Generate logical rules in if-then format: """ result = await self.model_manager.generate( "text_gen", prompt, max_length=200, temperature=0.7 ) rules = [] for line in result.split("\n"): if "if" in line.lower() and "then" in line.lower(): parts = line.lower().split("then") condition = parts[0].replace("if", "").strip() action = parts[1].strip() rule = SymbolicRule(condition, action) rules.append(rule) return rules except Exception as e: return [] async def _combine_neural_symbolic(self, features: List[NeuralFeature], rules: List[SymbolicRule], context: Dict[str, Any]) -> Dict[str, Any]: """Combine neural and symbolic reasoning.""" try: # Use neural features to evaluate symbolic rules evaluated_rules = [] for rule in rules: # Calculate confidence based on feature associations confidence = 0.0 for feature in features: if feature.name in rule.condition: confidence += feature.associations.get(rule.action, 0.0) rule.confidence = confidence / len(features) evaluated_rules.append(rule) # Generate combined result prompt = f""" Combine these evaluated rules to generate a solution: Rules: {json.dumps(evaluated_rules, indent=2)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Confidence level (0-1) """ result = await self.model_manager.generate( "text_gen", prompt, max_length=150, temperature=0.7 ) return { "conclusion": result["answer"], "confidence": 0.8 # Placeholder confidence } except Exception as e: return {} def _update_knowledge_base(self, features: List[NeuralFeature], rules: List[SymbolicRule], result: Dict[str, Any]) -> None: """Update knowledge base with new features and rules.""" # Update feature associations for feature in features: for rule in rules: if feature.name in rule.condition: feature.associations[rule.action] = rule.confidence # Update symbolic rules for rule in rules: rule.update_confidence(result["confidence"]) class MultiModalReasoning(ReasoningStrategy): """Implements multi-modal reasoning across different types of information.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Process different modalities modalities = await self._process_modalities(query, context) # Cross-modal alignment alignment = await self._cross_modal_alignment(modalities, context) # Integrated analysis integration = await self._integrated_analysis(alignment, context) # Generate unified response response = await self._generate_response(integration, context) return { "success": True, "answer": response["conclusion"], "modalities": modalities, "alignment": alignment, "integration": integration, "confidence": response["confidence"] } except Exception as e: return {"success": False, "error": str(e)} async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: prompt = f""" Process information across modalities: Query: {query} Context: {json.dumps(context)} For each modality analyze: 1. [Type]: Modality type 2. [Content]: Key information 3. [Features]: Important features 4. [Quality]: Information quality Format as: [M1] Type: ... Content: ... Features: ... Quality: ... """ response = await context["groq_api"].predict(prompt) return self._parse_modalities(response["answer"]) async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]: """Align information across different modalities.""" try: # Extract modality types modal_types = list(modalities.keys()) # Initialize alignment results alignments = [] # Process each modality pair for i in range(len(modal_types)): for j in range(i + 1, len(modal_types)): type1, type2 = modal_types[i], modal_types[j] # Get items from each modality items1 = modalities[type1] items2 = modalities[type2] # Find alignments between items for item1 in items1: for item2 in items2: similarity = self._calculate_similarity(item1, item2) if similarity > 0.5: # Threshold for alignment alignments.append({ "type1": type1, "type2": type2, "item1": item1, "item2": item2, "similarity": similarity }) # Sort alignments by similarity alignments.sort(key=lambda x: x["similarity"], reverse=True) return alignments except Exception as e: logging.error(f"Error in cross-modal alignment: {str(e)}") return [] def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float: """Calculate similarity between two items from different modalities.""" try: # Extract content from items content1 = str(item1.get("content", "")) content2 = str(item2.get("content", "")) # Calculate basic similarity (can be enhanced with more sophisticated methods) common_words = set(content1.lower().split()) & set(content2.lower().split()) total_words = set(content1.lower().split()) | set(content2.lower().split()) if not total_words: return 0.0 return len(common_words) / len(total_words) except Exception as e: logging.error(f"Error calculating similarity: {str(e)}") return 0.0 async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Perform integrated multi-modal analysis: Alignment: {json.dumps(alignment)} Context: {json.dumps(context)} For each insight: 1. [Insight]: Key finding 2. [Sources]: Contributing modalities 3. [Support]: Supporting evidence 4. [Confidence]: Confidence level Format as: [I1] Insight: ... Sources: ... Support: ... Confidence: ... """ response = await context["groq_api"].predict(prompt) return self._parse_integration(response["answer"]) async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate unified multi-modal response: Integration: {json.dumps(integration)} Context: {json.dumps(context)} Provide: 1. Main conclusion 2. Modal contributions 3. Integration benefits 4. Confidence level (0-1) """ response = await context["groq_api"].predict(prompt) return self._parse_response(response["answer"]) def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]: """Parse modalities from response.""" modalities = {} current_modality = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[M'): if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) current_modality = { "type": "", "content": "", "features": "", "quality": "" } elif current_modality: if line.startswith('Type:'): current_modality["type"] = line[5:].strip() elif line.startswith('Content:'): current_modality["content"] = line[8:].strip() elif line.startswith('Features:'): current_modality["features"] = line[9:].strip() elif line.startswith('Quality:'): current_modality["quality"] = line[8:].strip() if current_modality: if current_modality["type"] not in modalities: modalities[current_modality["type"]] = [] modalities[current_modality["type"]].append(current_modality) return modalities def _parse_alignment(self, response: str) -> List[Dict[str, Any]]: """Parse alignment from response.""" alignment = [] current_alignment = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[A'): if current_alignment: alignment.append(current_alignment) current_alignment = { "modalities": "", "mapping": "", "confidence": 0.0, "conflicts": [] } elif current_alignment: if line.startswith('Modalities:'): current_alignment["modalities"] = line[11:].strip() elif line.startswith('Mapping:'): current_alignment["mapping"] = line[7:].strip() elif line.startswith('Confidence:'): try: current_alignment["confidence"] = float(line[11:].strip()) except: pass elif line.startswith('Conflicts:'): mode = "conflicts" elif line.startswith("- "): if mode == "conflicts": current_alignment["conflicts"].append(line[2:].strip()) if current_alignment: alignment.append(current_alignment) return alignment def _parse_integration(self, response: str) -> List[Dict[str, Any]]: """Parse integration from response.""" integration = [] current_insight = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[I'): if current_insight: integration.append(current_insight) current_insight = { "insight": "", "sources": "", "support": "", "confidence": 0.0 } elif current_insight: if line.startswith('Insight:'): current_insight["insight"] = line[8:].strip() elif line.startswith('Sources:'): current_insight["sources"] = line[8:].strip() elif line.startswith('Support:'): current_insight["support"] = line[8:].strip() elif line.startswith('Confidence:'): try: current_insight["confidence"] = float(line[11:].strip()) except: pass if current_insight: integration.append(current_insight) return integration def _parse_response(self, response: str) -> Dict[str, Any]: """Parse response from response.""" response_dict = { "conclusion": "", "modal_contributions": [], "integration_benefits": [], "confidence": 0.0 } mode = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('Conclusion:'): response_dict["conclusion"] = line[11:].strip() elif line.startswith('Modal Contributions:'): mode = "modal" elif line.startswith('Integration Benefits:'): mode = "integration" elif line.startswith('Confidence:'): try: response_dict["confidence"] = float(line[11:].strip()) except: response_dict["confidence"] = 0.5 mode = None elif mode == "modal" and line.startswith('- '): response_dict["modal_contributions"].append(line[2:].strip()) elif mode == "integration" and line.startswith('- '): response_dict["integration_benefits"].append(line[2:].strip()) return response_dict class MetaLearningStrategy(ReasoningStrategy): """A meta-learning strategy that adapts its reasoning approach based on problem characteristics.""" def __init__(self): self.strategy_patterns = { "analytical": ["analyze", "compare", "evaluate", "measure"], "creative": ["design", "create", "innovate", "imagine"], "systematic": ["organize", "structure", "plan", "implement"], "critical": ["critique", "assess", "validate", "test"] } async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} # Analyze query to determine best reasoning patterns patterns = self._identify_patterns(query.lower()) prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: {', '.join(patterns)} Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: