nananie143 commited on
Commit
798eb17
·
verified ·
1 Parent(s): 3921722

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. Dockerfile +22 -15
  2. README.md +67 -35
  3. agentic_system.py +3 -2
  4. app.py +92 -54
  5. team_management.py +73 -12
Dockerfile CHANGED
@@ -1,32 +1,39 @@
1
  FROM python:3.10-slim
2
 
3
- # Install system dependencies including DNS tools
 
 
 
 
 
4
  RUN apt-get update && apt-get install -y \
 
5
  curl \
6
- dnsutils \
7
  && rm -rf /var/lib/apt/lists/*
8
 
9
- WORKDIR /code
10
-
11
- # Set DNS configuration
12
- RUN echo "nameserver 8.8.8.8" > /etc/resolv.conf && \
13
- echo "nameserver 8.8.4.4" >> /etc/resolv.conf
14
-
15
- # Set network timeouts
16
- ENV CURL_TIMEOUT=30
17
- ENV REQUESTS_TIMEOUT=30
18
 
19
- # Copy and install requirements
20
  COPY requirements.txt .
 
 
21
  RUN pip install --no-cache-dir -r requirements.txt
22
 
23
  # Copy application code
24
  COPY . .
25
 
26
- # Add healthcheck
27
- HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
28
- CMD curl -f http://localhost:7860/ || exit 1
29
 
 
30
  EXPOSE 7860
31
 
 
 
 
 
 
32
  CMD ["python", "app.py"]
 
1
  FROM python:3.10-slim
2
 
3
+ # Set environment variables
4
+ ENV PYTHONUNBUFFERED=1 \
5
+ DEBIAN_FRONTEND=noninteractive \
6
+ REQUESTS_TIMEOUT=30
7
+
8
+ # Install system dependencies
9
  RUN apt-get update && apt-get install -y \
10
+ build-essential \
11
  curl \
12
+ git \
13
  && rm -rf /var/lib/apt/lists/*
14
 
15
+ # Set working directory
16
+ WORKDIR /app
 
 
 
 
 
 
 
17
 
18
+ # Copy requirements first to leverage Docker cache
19
  COPY requirements.txt .
20
+
21
+ # Install Python dependencies
22
  RUN pip install --no-cache-dir -r requirements.txt
23
 
24
  # Copy application code
25
  COPY . .
26
 
27
+ # Set up DNS configuration
28
+ RUN echo "nameserver 8.8.8.8" > /etc/resolv.conf && \
29
+ echo "nameserver 8.8.4.4" >> /etc/resolv.conf
30
 
31
+ # Expose port
32
  EXPOSE 7860
33
 
34
+ # Healthcheck
35
+ HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
36
+ CMD curl -f http://localhost:7860/health || exit 1
37
+
38
+ # Command to run the application
39
  CMD ["python", "app.py"]
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Advanced Reasoning System 🧠
3
- emoji: 🧠
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
@@ -10,63 +10,95 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- # Advanced Reasoning System 🧠
14
 
15
- A sophisticated reasoning system that combines multiple strategies with local LLM capabilities for improved performance.
16
 
17
  ## Features
18
 
19
- - **Local LLM Integration**: Uses Llama 3.2B Overthinker model for fast, local inference
20
- - **Multiple Reasoning Strategies**:
21
  - Chain of Thought
22
  - Tree of Thoughts
23
  - Meta Learning
 
24
  - Recursive Reasoning
25
  - Analogical Reasoning
26
- - And more!
27
- - **Adaptive Strategy Selection**: Dynamically chooses the best reasoning approach
28
- - **GPU/CPU Flexibility**: Automatically uses GPU when available, falls back to CPU
29
- - **Efficient Resource Usage**: Optimized for performance with configurable parameters
30
 
31
- ## Technical Details
 
 
 
 
32
 
33
- - **Model**: tensorblock/Llama-3.2-3B-Overthinker-GGUF
34
- - **Framework**: Gradio 4.16.0
35
- - **Backend**: Python with async support
36
- - **Inference**: Local using llama-cpp-python
 
37
 
38
- ## Usage
39
 
40
- 1. The system will automatically download the model on first run
41
- 2. GPU acceleration is used when available
42
- 3. Ask questions and get detailed, step-by-step responses
43
- 4. System adapts its reasoning strategy based on the query
 
 
44
 
45
- ## Example Questions
 
 
 
 
46
 
47
- - What are the implications of artificial intelligence on society?
48
- - How does climate change affect global ecosystems?
49
- - What are the philosophical implications of quantum mechanics?
 
50
 
51
- ## Installation
 
 
52
 
53
  ```bash
54
- pip install -r requirements.txt
55
- python app.py
56
  ```
57
 
58
- ## Environment Variables
59
 
60
- Create a `.env` file with:
61
- ```
62
- HUGGINGFACE_TOKEN=your_token_here
63
- DEBUG_MODE=False
64
- LOG_LEVEL=INFO
65
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ## License
68
 
69
- MIT License
70
 
71
  ## Files
72
  - `app.py`: Main application with Gradio interface and API integration
 
1
  ---
2
+ title: Advanced Reasoning System 🤖
3
+ emoji: 🤖
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
 
10
  license: mit
11
  ---
12
 
13
+ # Advanced Reasoning System 🤖
14
 
15
+ A sophisticated multi-agent reasoning system that combines multiple strategies for advanced problem-solving.
16
 
17
  ## Features
18
 
19
+ - 🧠 Multiple Reasoning Strategies:
 
20
  - Chain of Thought
21
  - Tree of Thoughts
22
  - Meta Learning
23
+ - Local LLM Integration
24
  - Recursive Reasoning
25
  - Analogical Reasoning
 
 
 
 
26
 
27
+ - 🤝 Multi-Agent System:
28
+ - Dynamic Team Formation
29
+ - Cross-Team Collaboration
30
+ - Resource Management
31
+ - Task Orchestration
32
 
33
+ - 🔄 Adaptive Learning:
34
+ - Performance Tracking
35
+ - Strategy Weight Adjustment
36
+ - Pattern Recognition
37
+ - Meta-Learning Integration
38
 
39
+ ## Quick Start
40
 
41
+ 1. **Environment Setup**:
42
+ ```bash
43
+ python -m venv venv
44
+ source venv/bin/activate # On Windows: .\venv\Scripts\activate
45
+ pip install -r requirements.txt
46
+ ```
47
 
48
+ 2. **Configuration**:
49
+ ```bash
50
+ cp .env.example .env
51
+ # Edit .env with your settings
52
+ ```
53
 
54
+ 3. **Run the Application**:
55
+ ```bash
56
+ python app.py
57
+ ```
58
 
59
+ ## Docker Support
60
+
61
+ Build and run with Docker:
62
 
63
  ```bash
64
+ docker build -t advanced-reasoning .
65
+ docker run -p 7860:7860 advanced-reasoning
66
  ```
67
 
68
+ ## API Endpoints
69
 
70
+ - `/`: Main interface
71
+ - `/health`: Health check endpoint
72
+ - `/api/process_query`: Process queries via API
73
+
74
+ ## Components
75
+
76
+ 1. **Reasoning Engine**:
77
+ - Unified reasoning combining multiple strategies
78
+ - Dynamic strategy selection
79
+ - Result synthesis
80
+
81
+ 2. **Team Management**:
82
+ - Specialized teams (Coders, Business, Research, Trading)
83
+ - Cross-team collaboration
84
+ - Resource sharing
85
+
86
+ 3. **Orchestration**:
87
+ - Task planning and decomposition
88
+ - Resource allocation
89
+ - Performance monitoring
90
+
91
+ ## Contributing
92
+
93
+ 1. Fork the repository
94
+ 2. Create your feature branch
95
+ 3. Commit your changes
96
+ 4. Push to the branch
97
+ 5. Create a Pull Request
98
 
99
  ## License
100
 
101
+ MIT License - see LICENSE file for details
102
 
103
  ## Files
104
  - `app.py`: Main application with Gradio interface and API integration
agentic_system.py CHANGED
@@ -27,6 +27,7 @@ from datetime import datetime
27
  import uuid
28
  from concurrent.futures import ThreadPoolExecutor
29
  import numpy as np
 
30
 
31
  from orchestrator import (
32
  AgentOrchestrator,
@@ -35,8 +36,8 @@ from orchestrator import (
35
  TaskPriority,
36
  Task
37
  )
38
- from reasoning import ReasoningEngine, ReasoningMode
39
- from meta_learning import MetaLearningStrategy
40
 
41
  class AgentCapability(Enum):
42
  """Core capabilities of agents."""
 
27
  import uuid
28
  from concurrent.futures import ThreadPoolExecutor
29
  import numpy as np
30
+ from collections import defaultdict
31
 
32
  from orchestrator import (
33
  AgentOrchestrator,
 
36
  TaskPriority,
37
  Task
38
  )
39
+ from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
40
+ from reasoning.meta_learning import MetaLearningStrategy
41
 
42
  class AgentCapability(Enum):
43
  """Core capabilities of agents."""
app.py CHANGED
@@ -19,7 +19,7 @@ from requests.adapters import HTTPAdapter, Retry
19
  from agentic_system import AgenticSystem
20
  from team_management import TeamManager
21
  from orchestrator import AgentOrchestrator
22
- from reasoning.unified_engine import UnifiedReasoningEngine
23
 
24
  # Configure logging
25
  logging.basicConfig(level=logging.INFO)
@@ -29,31 +29,18 @@ logger = logging.getLogger(__name__)
29
  TIMEOUT = int(os.getenv('REQUESTS_TIMEOUT', '30'))
30
  RETRIES = 3
31
 
32
- # Configure session with retries
33
- session = requests.Session()
34
- retries = Retry(total=RETRIES,
35
- backoff_factor=1,
36
- status_forcelist=[429, 500, 502, 503, 504])
37
- session.mount('https://', HTTPAdapter(max_retries=retries))
38
- session.mount('http://', HTTPAdapter(max_retries=retries))
39
-
40
  def check_network():
41
  """Check network connectivity."""
42
  try:
43
- # Try to resolve huggingface.co
44
- socket.gethostbyname('huggingface.co')
45
- # Try to connect to the API
46
- response = session.get('https://huggingface.co/api/health',
47
- timeout=TIMEOUT)
48
- response.raise_for_status()
49
- return True
50
- except Exception as e:
51
- logger.error(f"Network check failed: {e}")
52
  return False
53
 
54
  class AgentInterface:
55
  """Interface for the agentic system."""
56
-
57
  def __init__(self):
58
  """Initialize the interface components."""
59
  # Check network connectivity
@@ -66,66 +53,117 @@ class AgentInterface:
66
  parallel_threshold=3,
67
  learning_rate=0.1
68
  )
69
-
 
 
70
  async def process_query(self, message: str) -> str:
71
  """Process user query through the reasoning system."""
72
  try:
73
- # Prepare context
74
- context = {
75
- 'timestamp': datetime.now().isoformat(),
76
- 'objective': 'Provide helpful and accurate responses',
77
- 'mode': 'analytical'
78
- }
79
-
80
- # Get response from reasoning engine
81
  result = await self.reasoning_engine.reason(
82
  query=message,
83
- context=context
84
  )
85
-
86
- return result.get('answer', 'No response generated')
87
-
 
 
 
 
 
 
 
 
88
  except Exception as e:
89
  logger.error(f"Error processing query: {e}")
90
  return f"An error occurred: {str(e)}"
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  # Initialize interface
93
  interface = AgentInterface()
94
 
95
  # Create Gradio interface
96
- with gr.Blocks(title="Advanced Reasoning System") as demo:
97
- gr.Markdown("# Advanced Reasoning System")
 
 
 
 
 
 
 
 
 
 
 
98
 
99
  with gr.Row():
100
- with gr.Column():
101
- input_text = gr.Textbox(
102
- label="Your Query",
103
- placeholder="Enter your query here...",
104
  lines=3
105
  )
106
- submit_btn = gr.Button("Submit")
 
 
107
 
108
- with gr.Column():
109
- output_text = gr.Textbox(
110
  label="Response",
111
- lines=5
 
112
  )
113
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  submit_btn.click(
115
  fn=interface.process_query,
116
- inputs=input_text,
117
- outputs=output_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  )
119
-
120
- # Start the server with health check endpoint
121
- app = gr.mount_gradio_app(None, demo, path="/")
122
-
123
- @app.get("/health")
124
- async def health_check():
125
- """Health check endpoint."""
126
- if check_network():
127
- return {"status": "healthy"}
128
- return {"status": "degraded", "reason": "network_issues"}
129
 
130
  # Launch the interface
131
  if __name__ == "__main__":
 
19
  from agentic_system import AgenticSystem
20
  from team_management import TeamManager
21
  from orchestrator import AgentOrchestrator
22
+ from reasoning import UnifiedReasoningEngine
23
 
24
  # Configure logging
25
  logging.basicConfig(level=logging.INFO)
 
29
  TIMEOUT = int(os.getenv('REQUESTS_TIMEOUT', '30'))
30
  RETRIES = 3
31
 
 
 
 
 
 
 
 
 
32
  def check_network():
33
  """Check network connectivity."""
34
  try:
35
+ # Test connection to Hugging Face
36
+ response = requests.get('https://huggingface.co', timeout=TIMEOUT)
37
+ return response.status_code == 200
38
+ except requests.RequestException as e:
39
+ logger.warning(f"Network connectivity issue: {e}")
 
 
 
 
40
  return False
41
 
42
  class AgentInterface:
43
  """Interface for the agentic system."""
 
44
  def __init__(self):
45
  """Initialize the interface components."""
46
  # Check network connectivity
 
53
  parallel_threshold=3,
54
  learning_rate=0.1
55
  )
56
+ self.team_manager = TeamManager(self.orchestrator)
57
+ self.system = AgenticSystem()
58
+
59
  async def process_query(self, message: str) -> str:
60
  """Process user query through the reasoning system."""
61
  try:
62
+ # Log incoming query
63
+ logger.info(f"Processing query: {message}")
64
+
65
+ # Get reasoning result
 
 
 
 
66
  result = await self.reasoning_engine.reason(
67
  query=message,
68
+ context={"timestamp": datetime.now().isoformat()}
69
  )
70
+
71
+ # Format response
72
+ if result.success:
73
+ response = f"Answer: {result.answer}\nConfidence: {result.confidence:.2f}"
74
+ if result.meta_insights:
75
+ response += "\nInsights:\n" + "\n".join(f"- {insight}" for insight in result.meta_insights)
76
+ else:
77
+ response = "I apologize, but I couldn't process your query effectively. Please try rephrasing or providing more context."
78
+
79
+ return response
80
+
81
  except Exception as e:
82
  logger.error(f"Error processing query: {e}")
83
  return f"An error occurred: {str(e)}"
84
 
85
+ def health_check(self) -> Dict[str, Any]:
86
+ """Check system health."""
87
+ return {
88
+ "status": "healthy",
89
+ "network": check_network(),
90
+ "components": {
91
+ "orchestrator": self.orchestrator is not None,
92
+ "reasoning_engine": self.reasoning_engine is not None,
93
+ "team_manager": self.team_manager is not None,
94
+ "system": self.system is not None
95
+ },
96
+ "timestamp": datetime.now().isoformat()
97
+ }
98
+
99
  # Initialize interface
100
  interface = AgentInterface()
101
 
102
  # Create Gradio interface
103
+ with gr.Blocks(title="Advanced Reasoning System", theme=gr.themes.Soft()) as demo:
104
+ gr.Markdown("""
105
+ # 🤖 Advanced Reasoning System
106
+
107
+ Welcome to the Advanced Reasoning System! This system combines multiple reasoning strategies:
108
+ - Chain of Thought
109
+ - Tree of Thoughts
110
+ - Meta Learning
111
+ - Local LLM
112
+ - And more!
113
+
114
+ Ask any question and the system will use its advanced reasoning capabilities to help you.
115
+ """)
116
 
117
  with gr.Row():
118
+ with gr.Column(scale=4):
119
+ query_input = gr.Textbox(
120
+ label="Your Question",
121
+ placeholder="Enter your question here...",
122
  lines=3
123
  )
124
+ with gr.Row():
125
+ submit_btn = gr.Button("Submit", variant="primary")
126
+ clear_btn = gr.Button("Clear")
127
 
128
+ with gr.Column(scale=6):
129
+ output = gr.Textbox(
130
  label="Response",
131
+ lines=10,
132
+ interactive=False
133
  )
134
 
135
+ # Add examples
136
+ gr.Examples(
137
+ examples=[
138
+ "How would you approach designing a scalable microservices architecture?",
139
+ "What are the key considerations for implementing a secure authentication system?",
140
+ "Can you help me understand the differences between various machine learning algorithms?",
141
+ ],
142
+ inputs=query_input,
143
+ label="Example Questions"
144
+ )
145
+
146
+ # Event handlers
147
  submit_btn.click(
148
  fn=interface.process_query,
149
+ inputs=query_input,
150
+ outputs=output,
151
+ api_name="process_query"
152
+ )
153
+ clear_btn.click(
154
+ fn=lambda: ("", ""),
155
+ inputs=None,
156
+ outputs=[query_input, output],
157
+ api_name="clear"
158
+ )
159
+
160
+ # Add health check endpoint
161
+ demo.load(
162
+ fn=interface.health_check,
163
+ inputs=None,
164
+ outputs=None,
165
+ api_name="health"
166
  )
 
 
 
 
 
 
 
 
 
 
167
 
168
  # Launch the interface
169
  if __name__ == "__main__":
team_management.py CHANGED
@@ -22,8 +22,26 @@ from datetime import datetime
22
  import uuid
23
  from collections import defaultdict
24
 
25
- from orchestrator import AgentOrchestrator, TaskPriority
26
- from agentic_system import AgentRole, AgentCapability, AgentPersonality, Agent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  class TeamType(Enum):
29
  """Specialized team types."""
@@ -70,7 +88,7 @@ class TeamManager:
70
  def __init__(self, orchestrator: AgentOrchestrator):
71
  self.orchestrator = orchestrator
72
  self.teams: Dict[str, TeamProfile] = {}
73
- self.agents: Dict[str, Dict[str, Agent]] = {} # team_id -> {agent_id -> Agent}
74
  self.collaboration_network: Dict[str, CollaborationLink] = {}
75
  self.shared_objectives: Dict[str, Set[str]] = defaultdict(set) # objective_id -> set of team_ids
76
  self.lock = asyncio.Lock()
@@ -189,10 +207,14 @@ class TeamManager:
189
  {
190
  "role": AgentRole.COORDINATOR,
191
  "capabilities": [
192
- AgentCapability.COORDINATION,
193
- AgentCapability.REASONING
194
  ],
195
- "personality": AgentPersonality.PROACTIVE
 
 
 
 
196
  },
197
  {
198
  "role": AgentRole.EXECUTOR,
@@ -200,7 +222,11 @@ class TeamManager:
200
  AgentCapability.EXECUTION,
201
  AgentCapability.LEARNING
202
  ],
203
- "personality": AgentPersonality.ANALYTICAL
 
 
 
 
204
  }
205
  ]
206
 
@@ -214,7 +240,11 @@ class TeamManager:
214
  AgentCapability.REASONING
215
  ],
216
  "personality": AgentPersonality.CREATIVE,
217
- "expertise": ["software_development", "system_design"]
 
 
 
 
218
  }
219
  ])
220
  elif team_type == TeamType.BUSINESS:
@@ -226,7 +256,11 @@ class TeamManager:
226
  AgentCapability.LEARNING
227
  ],
228
  "personality": AgentPersonality.PROACTIVE,
229
- "expertise": ["business_strategy", "market_analysis"]
 
 
 
 
230
  }
231
  ])
232
  elif team_type == TeamType.RESEARCH:
@@ -238,7 +272,11 @@ class TeamManager:
238
  AgentCapability.LEARNING
239
  ],
240
  "personality": AgentPersonality.ANALYTICAL,
241
- "expertise": ["research", "data_analysis"]
 
 
 
 
242
  }
243
  ])
244
  elif team_type == TeamType.TRADERS:
@@ -250,7 +288,11 @@ class TeamManager:
250
  AgentCapability.REASONING
251
  ],
252
  "personality": AgentPersonality.CAUTIOUS,
253
- "expertise": ["trading", "risk_management"]
 
 
 
 
254
  }
255
  ])
256
 
@@ -316,7 +358,7 @@ class TeamManager:
316
  team_agents = self.agents[team_id]
317
 
318
  # Calculate team progress
319
- active_agents = sum(1 for agent in team_agents.values() if agent.state == "busy")
320
  completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents)
321
 
322
  team_progress[team.name] = {
@@ -440,3 +482,22 @@ class TeamManager:
440
  sum(link.strength for link in team_links) /
441
  len(team_links) if team_links else 0.5
442
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  import uuid
23
  from collections import defaultdict
24
 
25
+ from orchestrator import AgentOrchestrator, TaskPriority, AgentRole, AgentState
26
+ from reasoning import UnifiedReasoningEngine
27
+
28
+ # Agent capabilities and personality types
29
+ class AgentCapability(Enum):
30
+ """Core capabilities of agents."""
31
+ REASONING = "reasoning"
32
+ LEARNING = "learning"
33
+ EXECUTION = "execution"
34
+ COORDINATION = "coordination"
35
+ MONITORING = "monitoring"
36
+
37
+ class AgentPersonality(Enum):
38
+ """Different personality types for agents."""
39
+ ANALYTICAL = "analytical"
40
+ CREATIVE = "creative"
41
+ PRAGMATIC = "pragmatic"
42
+ COLLABORATIVE = "collaborative"
43
+ PROACTIVE = "proactive"
44
+ CAUTIOUS = "cautious"
45
 
46
  class TeamType(Enum):
47
  """Specialized team types."""
 
88
  def __init__(self, orchestrator: AgentOrchestrator):
89
  self.orchestrator = orchestrator
90
  self.teams: Dict[str, TeamProfile] = {}
91
+ self.agents: Dict[str, Dict[str, 'Agent']] = {} # team_id -> {agent_id -> Agent}
92
  self.collaboration_network: Dict[str, CollaborationLink] = {}
93
  self.shared_objectives: Dict[str, Set[str]] = defaultdict(set) # objective_id -> set of team_ids
94
  self.lock = asyncio.Lock()
 
207
  {
208
  "role": AgentRole.COORDINATOR,
209
  "capabilities": [
210
+ AgentCapability.REASONING,
211
+ AgentCapability.COORDINATION
212
  ],
213
+ "personality": AgentPersonality.PROACTIVE,
214
+ "profile": {
215
+ "name": "Coordinator",
216
+ "description": "Team coordinator"
217
+ }
218
  },
219
  {
220
  "role": AgentRole.EXECUTOR,
 
222
  AgentCapability.EXECUTION,
223
  AgentCapability.LEARNING
224
  ],
225
+ "personality": AgentPersonality.ANALYTICAL,
226
+ "profile": {
227
+ "name": "Executor",
228
+ "description": "Task executor"
229
+ }
230
  }
231
  ]
232
 
 
240
  AgentCapability.REASONING
241
  ],
242
  "personality": AgentPersonality.CREATIVE,
243
+ "expertise": ["software_development", "system_design"],
244
+ "profile": {
245
+ "name": "Developer",
246
+ "description": "Software developer"
247
+ }
248
  }
249
  ])
250
  elif team_type == TeamType.BUSINESS:
 
256
  AgentCapability.LEARNING
257
  ],
258
  "personality": AgentPersonality.PROACTIVE,
259
+ "expertise": ["business_strategy", "market_analysis"],
260
+ "profile": {
261
+ "name": "Planner",
262
+ "description": "Business planner"
263
+ }
264
  }
265
  ])
266
  elif team_type == TeamType.RESEARCH:
 
272
  AgentCapability.LEARNING
273
  ],
274
  "personality": AgentPersonality.ANALYTICAL,
275
+ "expertise": ["research", "data_analysis"],
276
+ "profile": {
277
+ "name": "Researcher",
278
+ "description": "Researcher"
279
+ }
280
  }
281
  ])
282
  elif team_type == TeamType.TRADERS:
 
288
  AgentCapability.REASONING
289
  ],
290
  "personality": AgentPersonality.CAUTIOUS,
291
+ "expertise": ["trading", "risk_management"],
292
+ "profile": {
293
+ "name": "Trader",
294
+ "description": "Trader"
295
+ }
296
  }
297
  ])
298
 
 
358
  team_agents = self.agents[team_id]
359
 
360
  # Calculate team progress
361
+ active_agents = sum(1 for agent in team_agents.values() if agent.state == AgentState.BUSY)
362
  completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents)
363
 
364
  team_progress[team.name] = {
 
482
  sum(link.strength for link in team_links) /
483
  len(team_links) if team_links else 0.5
484
  )
485
+
486
+ class Agent:
487
+ def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
488
+ self.profile = profile
489
+ self.reasoning_engine = reasoning_engine
490
+ self.meta_learning = meta_learning
491
+ self.state = AgentState.IDLE
492
+
493
+ def get_task_completion_rate(self):
494
+ # Implement task completion rate calculation
495
+ pass
496
+
497
+ def get_completed_task_count(self):
498
+ # Implement completed task count calculation
499
+ pass
500
+
501
+ def get_total_task_count(self):
502
+ # Implement total task count calculation
503
+ pass