advanced-reasoning / orchestrator.py
nananie143's picture
Upload folder using huggingface_hub
bbeef11 verified
"""
Agentic Orchestrator for Advanced AI System
-----------------------------------------
Manages and coordinates multiple agentic components:
1. Task Planning & Decomposition
2. Resource Management
3. Agent Communication
4. State Management
5. Error Recovery
6. Performance Monitoring
"""
import logging
from typing import Dict, Any, List, Optional, Union, TypeVar, Generic
from dataclasses import dataclass, field
from enum import Enum
import json
import asyncio
from datetime import datetime
import uuid
from concurrent.futures import ThreadPoolExecutor
import networkx as nx
from collections import defaultdict
import numpy as np
from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
from reasoning.meta_learning import MetaLearningStrategy
T = TypeVar('T')
class AgentRole(Enum):
"""Different roles an agent can take."""
PLANNER = "planner"
EXECUTOR = "executor"
MONITOR = "monitor"
COORDINATOR = "coordinator"
LEARNER = "learner"
class AgentState(Enum):
"""Possible states of an agent."""
IDLE = "idle"
BUSY = "busy"
ERROR = "error"
LEARNING = "learning"
TERMINATED = "terminated"
class TaskPriority(Enum):
"""Task priority levels."""
LOW = 0
MEDIUM = 1
HIGH = 2
CRITICAL = 3
@dataclass
class AgentMetadata:
"""Metadata about an agent."""
id: str
role: AgentRole
capabilities: List[str]
state: AgentState
load: float
last_active: datetime
metrics: Dict[str, float]
@dataclass
class Task:
"""Represents a task in the system."""
id: str
description: str
priority: TaskPriority
dependencies: List[str]
assigned_to: Optional[str]
state: str
created_at: datetime
deadline: Optional[datetime]
metadata: Dict[str, Any]
class AgentOrchestrator:
"""Advanced orchestrator for managing agentic system."""
def __init__(self, config: Dict[str, Any] = None):
self.config = config or {}
# Core components
self.agents: Dict[str, AgentMetadata] = {}
self.tasks: Dict[str, Task] = {}
self.task_graph = nx.DiGraph()
# State management
self.state_history: List[Dict[str, Any]] = []
self.global_state: Dict[str, Any] = {}
# Resource management
self.resource_pool: Dict[str, Any] = {}
self.resource_locks: Dict[str, asyncio.Lock] = {}
# Communication
self.message_queue = asyncio.Queue()
self.event_bus = asyncio.Queue()
# Performance monitoring
self.metrics = defaultdict(list)
self.performance_log = []
# Error handling
self.error_handlers: Dict[str, callable] = {}
self.recovery_strategies: Dict[str, callable] = {}
# Async support
self.executor = ThreadPoolExecutor(max_workers=4)
self.lock = asyncio.Lock()
# Logging
self.logger = logging.getLogger(__name__)
# Initialize components
self._init_components()
def _init_components(self):
"""Initialize orchestrator components."""
# Initialize reasoning engine
self.reasoning_engine = ReasoningEngine(
min_confidence=0.7,
parallel_threshold=5,
learning_rate=0.1,
strategy_weights={
"LOCAL_LLM": 2.0,
"CHAIN_OF_THOUGHT": 1.0,
"TREE_OF_THOUGHTS": 1.0,
"META_LEARNING": 1.5
}
)
# Initialize meta-learning
self.meta_learning = MetaLearningStrategy()
# Register basic error handlers
self._register_error_handlers()
async def register_agent(
self,
role: AgentRole,
capabilities: List[str]
) -> str:
"""Register a new agent with the orchestrator."""
agent_id = str(uuid.uuid4())
agent = AgentMetadata(
id=agent_id,
role=role,
capabilities=capabilities,
state=AgentState.IDLE,
load=0.0,
last_active=datetime.now(),
metrics={}
)
async with self.lock:
self.agents[agent_id] = agent
self.logger.info(f"Registered new agent: {agent_id} with role {role}")
return agent_id
async def submit_task(
self,
description: str,
priority: TaskPriority = TaskPriority.MEDIUM,
dependencies: List[str] = None,
deadline: Optional[datetime] = None,
metadata: Dict[str, Any] = None
) -> str:
"""Submit a new task to the orchestrator."""
task_id = str(uuid.uuid4())
task = Task(
id=task_id,
description=description,
priority=priority,
dependencies=dependencies or [],
assigned_to=None,
state="pending",
created_at=datetime.now(),
deadline=deadline,
metadata=metadata or {}
)
async with self.lock:
self.tasks[task_id] = task
self._update_task_graph(task)
# Trigger task planning
await self._plan_task_execution(task_id)
return task_id
async def _plan_task_execution(self, task_id: str) -> None:
"""Plan the execution of a task."""
task = self.tasks[task_id]
# Check dependencies
if not await self._check_dependencies(task):
self.logger.info(f"Task {task_id} waiting for dependencies")
return
# Find suitable agent
agent_id = await self._find_suitable_agent(task)
if not agent_id:
self.logger.warning(f"No suitable agent found for task {task_id}")
return
# Assign task
await self._assign_task(task_id, agent_id)
async def _check_dependencies(self, task: Task) -> bool:
"""Check if all task dependencies are satisfied."""
for dep_id in task.dependencies:
if dep_id not in self.tasks:
return False
if self.tasks[dep_id].state != "completed":
return False
return True
async def _find_suitable_agent(self, task: Task) -> Optional[str]:
"""Find the most suitable agent for a task."""
best_agent = None
best_score = float('-inf')
for agent_id, agent in self.agents.items():
if agent.state != AgentState.IDLE:
continue
score = await self._calculate_agent_suitability(agent, task)
if score > best_score:
best_score = score
best_agent = agent_id
return best_agent
async def _calculate_agent_suitability(
self,
agent: AgentMetadata,
task: Task
) -> float:
"""Calculate how suitable an agent is for a task."""
# Base score on capabilities match
capability_score = sum(
1 for cap in task.metadata.get("required_capabilities", [])
if cap in agent.capabilities
)
# Consider agent load
load_score = 1 - agent.load
# Consider agent's recent performance
performance_score = sum(agent.metrics.values()) / len(agent.metrics) if agent.metrics else 0.5
# Weighted combination
weights = self.config.get("agent_selection_weights", {
"capabilities": 0.5,
"load": 0.3,
"performance": 0.2
})
return (
weights["capabilities"] * capability_score +
weights["load"] * load_score +
weights["performance"] * performance_score
)
async def _assign_task(self, task_id: str, agent_id: str) -> None:
"""Assign a task to an agent."""
async with self.lock:
task = self.tasks[task_id]
agent = self.agents[agent_id]
task.assigned_to = agent_id
task.state = "assigned"
agent.state = AgentState.BUSY
agent.load += 1
agent.last_active = datetime.now()
self.logger.info(f"Assigned task {task_id} to agent {agent_id}")
# Notify agent
await self.message_queue.put({
"type": "task_assignment",
"task_id": task_id,
"agent_id": agent_id,
"timestamp": datetime.now()
})
def _update_task_graph(self, task: Task) -> None:
"""Update the task dependency graph."""
self.task_graph.add_node(task.id, task=task)
for dep_id in task.dependencies:
self.task_graph.add_edge(dep_id, task.id)
async def _monitor_system_state(self):
"""Monitor overall system state."""
while True:
try:
# Collect agent states
agent_states = {
agent_id: {
"state": agent.state,
"load": agent.load,
"metrics": agent.metrics
}
for agent_id, agent in self.agents.items()
}
# Collect task states
task_states = {
task_id: {
"state": task.state,
"assigned_to": task.assigned_to,
"deadline": task.deadline
}
for task_id, task in self.tasks.items()
}
# Update global state
self.global_state = {
"timestamp": datetime.now(),
"agents": agent_states,
"tasks": task_states,
"resource_usage": self._get_resource_usage(),
"performance_metrics": self._calculate_performance_metrics()
}
# Archive state
self.state_history.append(self.global_state.copy())
# Trim history if too long
if len(self.state_history) > 1000:
self.state_history = self.state_history[-1000:]
# Check for anomalies
await self._check_anomalies()
await asyncio.sleep(1) # Monitor frequency
except Exception as e:
self.logger.error(f"Error in system monitoring: {e}")
await self._handle_error("monitoring_error", e)
def _get_resource_usage(self) -> Dict[str, float]:
"""Get current resource usage statistics."""
return {
"cpu_usage": sum(agent.load for agent in self.agents.values()) / len(self.agents),
"memory_usage": len(self.state_history) * 1000, # Rough estimate
"queue_size": self.message_queue.qsize()
}
def _calculate_performance_metrics(self) -> Dict[str, float]:
"""Calculate current performance metrics."""
metrics = {}
# Task completion rate
completed_tasks = sum(1 for task in self.tasks.values() if task.state == "completed")
total_tasks = len(self.tasks)
metrics["task_completion_rate"] = completed_tasks / max(1, total_tasks)
# Average task duration
durations = []
for task in self.tasks.values():
if task.state == "completed" and "completion_time" in task.metadata:
duration = (task.metadata["completion_time"] - task.created_at).total_seconds()
durations.append(duration)
metrics["avg_task_duration"] = sum(durations) / len(durations) if durations else 0
# Agent utilization
metrics["agent_utilization"] = sum(agent.load for agent in self.agents.values()) / len(self.agents)
return metrics
async def _check_anomalies(self):
"""Check for system anomalies."""
# Check for overloaded agents
for agent_id, agent in self.agents.items():
if agent.load > 0.9: # 90% load threshold
await self._handle_overload(agent_id)
# Check for stalled tasks
now = datetime.now()
for task_id, task in self.tasks.items():
if task.state == "assigned":
duration = (now - task.created_at).total_seconds()
if duration > 3600: # 1 hour threshold
await self._handle_stalled_task(task_id)
# Check for missed deadlines
for task_id, task in self.tasks.items():
if task.deadline and now > task.deadline and task.state != "completed":
await self._handle_missed_deadline(task_id)
async def _handle_overload(self, agent_id: str):
"""Handle an overloaded agent."""
agent = self.agents[agent_id]
# Try to redistribute tasks
assigned_tasks = [
task_id for task_id, task in self.tasks.items()
if task.assigned_to == agent_id and task.state == "assigned"
]
for task_id in assigned_tasks:
# Find another suitable agent
new_agent_id = await self._find_suitable_agent(self.tasks[task_id])
if new_agent_id:
await self._reassign_task(task_id, new_agent_id)
async def _handle_stalled_task(self, task_id: str):
"""Handle a stalled task."""
task = self.tasks[task_id]
# First, try to ping the assigned agent
if task.assigned_to:
agent = self.agents[task.assigned_to]
if agent.state == AgentState.ERROR:
# Agent is in error state, reassign task
await self._reassign_task(task_id, None)
else:
# Request status update from agent
await self.message_queue.put({
"type": "status_request",
"task_id": task_id,
"agent_id": task.assigned_to,
"timestamp": datetime.now()
})
async def _handle_missed_deadline(self, task_id: str):
"""Handle a missed deadline."""
task = self.tasks[task_id]
# Log the incident
self.logger.warning(f"Task {task_id} missed deadline: {task.deadline}")
# Update task priority to CRITICAL
task.priority = TaskPriority.CRITICAL
# If task is assigned, try to speed it up
if task.assigned_to:
await self.message_queue.put({
"type": "expedite_request",
"task_id": task_id,
"agent_id": task.assigned_to,
"timestamp": datetime.now()
})
else:
# If not assigned, try to assign to fastest available agent
await self._plan_task_execution(task_id)
async def _reassign_task(self, task_id: str, new_agent_id: Optional[str] = None):
"""Reassign a task to a new agent."""
task = self.tasks[task_id]
old_agent_id = task.assigned_to
if old_agent_id:
# Update old agent
old_agent = self.agents[old_agent_id]
old_agent.load -= 1
if old_agent.load <= 0:
old_agent.state = AgentState.IDLE
if new_agent_id is None:
# Find new suitable agent
new_agent_id = await self._find_suitable_agent(task)
if new_agent_id:
# Assign to new agent
await self._assign_task(task_id, new_agent_id)
else:
# No suitable agent found, mark task as pending
task.state = "pending"
task.assigned_to = None
def _register_error_handlers(self):
"""Register basic error handlers."""
self.error_handlers.update({
"monitoring_error": self._handle_monitoring_error,
"agent_error": self._handle_agent_error,
"task_error": self._handle_task_error,
"resource_error": self._handle_resource_error
})
self.recovery_strategies.update({
"agent_recovery": self._recover_agent,
"task_recovery": self._recover_task,
"resource_recovery": self._recover_resource
})
async def _handle_error(self, error_type: str, error: Exception):
"""Handle an error using registered handlers."""
handler = self.error_handlers.get(error_type)
if handler:
try:
await handler(error)
except Exception as e:
self.logger.error(f"Error in error handler: {e}")
else:
self.logger.error(f"No handler for error type: {error_type}")
self.logger.error(f"Error: {error}")
async def _handle_monitoring_error(self, error: Exception):
"""Handle monitoring system errors."""
self.logger.error(f"Monitoring error: {error}")
# Implement recovery logic
pass
async def _handle_agent_error(self, error: Exception):
"""Handle agent-related errors."""
self.logger.error(f"Agent error: {error}")
# Implement recovery logic
pass
async def _handle_task_error(self, error: Exception):
"""Handle task-related errors."""
self.logger.error(f"Task error: {error}")
# Implement recovery logic
pass
async def _handle_resource_error(self, error: Exception):
"""Handle resource-related errors."""
self.logger.error(f"Resource error: {error}")
# Implement recovery logic
pass
async def _recover_agent(self, agent_id: str):
"""Recover a failed agent."""
try:
agent = self.agents[agent_id]
# Log recovery attempt
self.logger.info(f"Attempting to recover agent {agent_id}")
# Reset agent state
agent.state = AgentState.IDLE
agent.load = 0
agent.last_active = datetime.now()
# Reassign any tasks that were assigned to this agent
for task_id, task in self.tasks.items():
if task.assigned_to == agent_id:
await self._reassign_task(task_id)
# Update metrics
agent.metrics["recovery_attempts"] = agent.metrics.get("recovery_attempts", 0) + 1
self.logger.info(f"Successfully recovered agent {agent_id}")
return True
except Exception as e:
self.logger.error(f"Failed to recover agent {agent_id}: {e}")
return False
async def _recover_task(self, task_id: str):
"""Recover a failed task."""
try:
task = self.tasks[task_id]
# Log recovery attempt
self.logger.info(f"Attempting to recover task {task_id}")
# Reset task state
task.state = "pending"
task.assigned_to = None
# Try to reassign the task
await self._reassign_task(task_id)
self.logger.info(f"Successfully recovered task {task_id}")
return True
except Exception as e:
self.logger.error(f"Failed to recover task {task_id}: {e}")
return False
async def _recover_resource(self, resource_id: str):
"""Recover a failed resource."""
try:
# Log recovery attempt
self.logger.info(f"Attempting to recover resource {resource_id}")
# Release any locks on the resource
if resource_id in self.resource_locks:
lock = self.resource_locks[resource_id]
if lock.locked():
lock.release()
# Reset resource state
if resource_id in self.resource_pool:
self.resource_pool[resource_id] = {
"state": "available",
"last_error": None,
"last_recovery": datetime.now()
}
self.logger.info(f"Successfully recovered resource {resource_id}")
return True
except Exception as e:
self.logger.error(f"Failed to recover resource {resource_id}: {e}")
return False
async def create_agent(self, role: AgentRole, capabilities: List[str]) -> str:
"""Create a new agent with specified role and capabilities."""
agent_id = str(uuid.uuid4())
agent_metadata = AgentMetadata(
id=agent_id,
role=role,
capabilities=capabilities,
state=AgentState.IDLE,
load=0.0,
last_active=datetime.now(),
metrics={
"tasks_completed": 0,
"success_rate": 1.0,
"avg_response_time": 0.0,
"resource_usage": 0.0
}
)
self.agents[agent_id] = agent_metadata
self.logger.info(f"Created new agent {agent_id} with role {role}")
return agent_id