nananie143's picture
Upload folder using huggingface_hub
f8017ae verified
raw
history blame
16 kB
"""
Advanced Agentic System Interface
-------------------------------
Provides a chat interface to interact with the autonomous agent teams:
- Team A: Coders (App/Software Developers)
- Team B: Business (Entrepreneurs)
- Team C: Research (Deep Online Research)
- Team D: Crypto & Sports Trading
"""
import gradio as gr
import asyncio
from typing import Dict, Any, List, Tuple
import json
from datetime import datetime
import logging
import os
import socket
import requests
from requests.adapters import HTTPAdapter, Retry
from urllib3.util.retry import Retry
import time
from agentic_system import AgenticSystem
from team_management import TeamManager, TeamType, TeamObjective
from orchestrator import AgentOrchestrator
from reasoning import UnifiedReasoningEngine as ReasoningEngine
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure network settings
TIMEOUT = int(os.getenv('REQUESTS_TIMEOUT', '30'))
MAX_RETRIES = 5
RETRY_BACKOFF = 1
def setup_requests_session():
"""Configure requests session with retries."""
session = requests.Session()
retry_strategy = Retry(
total=MAX_RETRIES,
backoff_factor=RETRY_BACKOFF,
status_forcelist=[408, 429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE"]
)
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("https://", adapter)
session.mount("http://", adapter)
return session
def check_network(max_attempts=3):
"""Check network connectivity with retries."""
session = setup_requests_session()
for attempt in range(max_attempts):
try:
# Try multiple DNS servers
for dns in ['8.8.8.8', '8.8.4.4', '1.1.1.1']:
try:
socket.gethostbyname('huggingface.co')
break
except socket.gaierror:
continue
# Test connection to Hugging Face
response = session.get('https://huggingface.co/api/health',
timeout=TIMEOUT)
if response.status_code == 200:
return True
except (requests.RequestException, socket.gaierror) as e:
logger.warning(f"Network check attempt {attempt + 1} failed: {e}")
if attempt < max_attempts - 1:
time.sleep(RETRY_BACKOFF * (attempt + 1))
continue
logger.error("Network connectivity check failed after all attempts")
return False
class ChatInterface:
def __init__(self):
# Check network connectivity
if not check_network():
logger.warning("Network connectivity issues detected - continuing with degraded functionality")
# Initialize core components with consistent configuration
config = {
"min_confidence": 0.7,
"parallel_threshold": 3,
"learning_rate": 0.1,
"strategy_weights": {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
}
}
self.orchestrator = AgentOrchestrator(config)
self.agentic_system = AgenticSystem(config)
self.team_manager = TeamManager(self.orchestrator)
self.chat_history = []
self.active_objectives = {}
# Set up network session
self.session = setup_requests_session()
# Initialize teams
asyncio.run(self.team_manager.initialize_team_agents())
async def process_message(
self,
message: str,
history: List[List[str]]
) -> Tuple[str, List[List[str]]]:
"""Process incoming chat message."""
try:
# Check network before processing
if not check_network():
return "Network connectivity issues detected. Some features may be limited.", history
# Analyze message intent
intent = await self._analyze_intent(message)
if intent["type"] == "query":
response = await self._handle_query(message)
elif intent["type"] == "objective":
response = await self._handle_objective(message)
elif intent["type"] == "status":
response = await self._handle_status_request(message)
else:
response = await self._handle_general_chat(message)
# Update chat history
history.append([message, response])
return response, history
except Exception as e:
logger.error(f"Error processing message: {str(e)}")
return f"Error processing message: {str(e)}", history
async def _analyze_intent(self, message: str) -> Dict[str, Any]:
"""Analyze user message intent."""
# Use reasoning engine to analyze intent
analysis = await self.orchestrator.reasoning_engine.reason(
query=message,
context={
"chat_history": self.chat_history,
"active_objectives": self.active_objectives
}
)
return {
"type": analysis.get("intent_type", "general"),
"confidence": analysis.get("confidence", 0.5),
"entities": analysis.get("entities", []),
"action_required": analysis.get("action_required", False)
}
async def _handle_query(self, message: str) -> str:
"""Handle information queries."""
# Get relevant teams for the query
recommended_teams = await self.team_manager.get_team_recommendations(message)
# Get responses from relevant teams
responses = []
for team_type in recommended_teams:
team_response = await self._get_team_response(team_type, message)
responses.append(team_response)
# Combine and format responses
combined_response = self._format_team_responses(responses)
return combined_response
async def _handle_objective(self, message: str) -> str:
"""Handle new objective creation."""
# Analyze objective requirements
analysis = await self.orchestrator.reasoning_engine.reason(
query=f"Analyze objective requirements: {message}",
context={"teams": self.team_manager.teams}
)
# Determine required teams
required_teams = [
TeamType[team.upper()]
for team in analysis.get("required_teams", [])
]
# Create cross-team objective
objective_id = await self.team_manager.create_cross_team_objective(
objective=message,
required_teams=required_teams
)
self.active_objectives[objective_id] = {
"description": message,
"teams": required_teams,
"status": "initiated",
"created_at": datetime.now()
}
return self._format_objective_creation(objective_id)
async def _handle_status_request(self, message: str) -> str:
"""Handle status check requests."""
# Get system status
system_status = await self.agentic_system.get_system_status()
# Get team status
team_status = {}
for team_id, team in self.team_manager.teams.items():
team_status[team.name] = await self.team_manager.monitor_objective_progress(team_id)
# Get objective status
objective_status = {}
for obj_id, obj in self.active_objectives.items():
objective_status[obj_id] = await self.team_manager.monitor_objective_progress(obj_id)
return self._format_status_response(system_status, team_status, objective_status)
async def _handle_general_chat(self, message: str) -> str:
"""Handle general chat interactions."""
# Use reasoning engine for response generation
response = await self.orchestrator.reasoning_engine.reason(
query=message,
context={
"chat_history": self.chat_history,
"system_state": await self.agentic_system.get_system_status()
}
)
return response.get("response", "I'm not sure how to respond to that.")
async def _get_team_response(self, team_type: TeamType, query: str) -> Dict[str, Any]:
"""Get response from a specific team."""
team_id = next(
(tid for tid, team in self.team_manager.teams.items()
if team.type == team_type),
None
)
if not team_id:
return {
"team": team_type.value,
"response": "Team not available",
"confidence": 0.0
}
# Get team agents
team_agents = self.team_manager.agents[team_id]
# Aggregate responses from team agents
responses = []
for agent in team_agents.values():
agent_response = await agent.process_query(query)
responses.append(agent_response)
# Combine responses
combined_response = self._combine_agent_responses(responses)
return {
"team": team_type.value,
"response": combined_response,
"confidence": sum(r.get("confidence", 0) for r in responses) / len(responses)
}
def _combine_agent_responses(self, responses: List[Dict[str, Any]]) -> str:
"""Combine multiple agent responses into a coherent response."""
# Sort by confidence
valid_responses = [
r for r in responses
if r.get("success", False) and r.get("response")
]
if not valid_responses:
return "No valid response available"
sorted_responses = sorted(
valid_responses,
key=lambda x: x.get("confidence", 0),
reverse=True
)
# Take the highest confidence response
best_response = sorted_responses[0]
return best_response.get("response", "No response available")
def _format_team_responses(self, responses: List[Dict[str, Any]]) -> str:
"""Format team responses into a readable message."""
formatted = []
for response in responses:
if response.get("confidence", 0) > 0.3: # Confidence threshold
formatted.append(
f"Team {response['team'].title()}:\n"
f"{response['response']}\n"
)
if not formatted:
return "No team was able to provide a confident response."
return "\n".join(formatted)
def _format_objective_creation(self, objective_id: str) -> str:
"""Format objective creation response."""
objective = self.active_objectives[objective_id]
return (
f"Objective created successfully!\n\n"
f"Objective ID: {objective_id}\n"
f"Description: {objective['description']}\n"
f"Assigned Teams: {', '.join(t.value for t in objective['teams'])}\n"
f"Status: {objective['status']}\n"
f"Created: {objective['created_at'].strftime('%Y-%m-%d %H:%M:%S')}"
)
def _format_status_response(
self,
system_status: Dict[str, Any],
team_status: Dict[str, Any],
objective_status: Dict[str, Any]
) -> str:
"""Format status response."""
# Format system status
status = [
"System Status:",
f"- State: {system_status['state']}",
f"- Active Agents: {system_status['agent_count']}",
f"- Active Tasks: {system_status['active_tasks']}",
"\nTeam Status:"
]
# Add team status
for team_name, team_info in team_status.items():
status.extend([
f"\n{team_name}:",
f"- Active Agents: {team_info['active_agents']}",
f"- Completion Rate: {team_info['completion_rate']:.2%}",
f"- Collaboration Score: {team_info['collaboration_score']:.2f}"
])
# Add objective status
if objective_status:
status.append("\nActive Objectives:")
for obj_id, obj_info in objective_status.items():
obj = self.active_objectives[obj_id]
status.extend([
f"\n{obj['description']}:",
f"- Status: {obj['status']}",
f"- Teams: {', '.join(t.value for t in obj['teams'])}",
f"- Progress: {sum(t['completion_rate'] for t in obj_info.values())/len(obj_info):.2%}"
])
return "\n".join(status)
class VentureUI:
def __init__(self, app):
self.app = app
def create_interface(self):
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# Advanced Agentic System Chat Interface
Chat with our autonomous agent teams:
- Team A: Coders (App/Software Developers)
- Team B: Business (Entrepreneurs)
- Team C: Research (Deep Online Research)
- Team D: Crypto & Sports Trading
You can:
1. Ask questions
2. Create new objectives
3. Check status of teams and objectives
4. Get insights and recommendations
""")
chatbot = gr.Chatbot(label="Chat History", height=400)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Chat with the Agentic System...",
lines=2,
scale=9
)
submit = gr.Button("Send", scale=1)
clear = gr.ClearButton([msg, chatbot], value="Clear")
async def respond(message, history):
try:
# Convert history to the format expected by process_message
history_list = [[x, y] for x, y in history] if history else []
response, _ = await self.app(message, history_list)
history.append((message, response))
return "", history
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
error_msg = "I apologize, but I encountered an error. Please try again."
history.append((message, error_msg))
return "", history
submit.click(
respond,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
lambda: gr.update(interactive=True),
None,
[submit],
queue=False
)
msg.submit(
respond,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
lambda: gr.update(interactive=True),
None,
[submit],
queue=False
)
return interface
def create_chat_interface() -> gr.Blocks:
"""Create Gradio chat interface."""
chat = ChatInterface()
ui = VentureUI(chat.process_message)
return ui.create_interface()
# Create and launch the interface
interface = create_chat_interface()
if __name__ == "__main__":
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)