Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,45 @@
|
|
1 |
-
import cv2
|
2 |
-
import torch
|
3 |
-
from ultralytics import YOLO
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
else:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
cap.release()
|
44 |
-
return stock_status
|
45 |
-
|
46 |
-
# Gradio interface to upload a video and classify stock
|
47 |
-
def main(video_input):
|
48 |
-
return classify_video(video_input)
|
49 |
-
|
50 |
-
# Creating the Gradio interface
|
51 |
-
iface = gr.Interface(fn=main, inputs=gr.Video(), outputs="text")
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
-
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# -----------------------------
|
6 |
+
# Load YOLO model
|
7 |
+
# -----------------------------
|
8 |
+
model = YOLO("./data/best.pt") # make sure this path matches your folder structure
|
9 |
+
|
10 |
+
# -----------------------------
|
11 |
+
# Prediction function
|
12 |
+
# -----------------------------
|
13 |
+
def predict(image):
|
14 |
+
# Run prediction
|
15 |
+
results = model.predict(image, conf=0.5)
|
16 |
+
|
17 |
+
# Annotated image with bounding boxes
|
18 |
+
result_img = results[0].plot()
|
19 |
+
|
20 |
+
# Extract detected labels
|
21 |
+
detected_labels = results[0].boxes.cls.tolist()
|
22 |
+
names = results[0].names
|
23 |
+
detected_objects = [names[int(cls_id)] for cls_id in detected_labels]
|
24 |
+
|
25 |
+
# Text output
|
26 |
+
if detected_objects:
|
27 |
+
label_text = f"✅ Detected objects: {', '.join(detected_objects)}"
|
28 |
else:
|
29 |
+
label_text = "❌ No objects detected."
|
30 |
+
|
31 |
+
return Image.fromarray(result_img), label_text
|
32 |
+
|
33 |
+
# -----------------------------
|
34 |
+
# Gradio Interface
|
35 |
+
# -----------------------------
|
36 |
+
demo = gr.Interface(
|
37 |
+
fn=predict,
|
38 |
+
inputs=gr.Image(type="pil"),
|
39 |
+
outputs=[gr.Image(type="pil", label="Detection Result"), gr.Textbox(label="Detected Objects")],
|
40 |
+
title="🥤 Bottle Detection with YOLOv11",
|
41 |
+
description="Upload an image to check if a **bottle** is detected using your trained YOLOv11 model."
|
42 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
if __name__ == "__main__":
|
45 |
+
demo.launch()
|