Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,597 +1,102 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import torch
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
-
import os
|
| 6 |
-
import json
|
| 7 |
-
import logging
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
import csv
|
| 10 |
-
import time
|
| 11 |
-
from datetime import datetime
|
| 12 |
-
from collections import Counter
|
| 13 |
-
from typing import List, Dict, Any, Optional
|
| 14 |
from ultralytics import YOLO
|
| 15 |
-
import
|
| 16 |
-
import
|
| 17 |
-
import
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
detected_issues: List[str] = []
|
| 35 |
-
gps_coordinates: List[List[float]] = []
|
| 36 |
-
last_metrics: Dict[str, Any] = {}
|
| 37 |
-
frame_count: int = 0
|
| 38 |
-
SAVE_IMAGE_INTERVAL = 1
|
| 39 |
-
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
| 40 |
-
MAX_IMAGES = 500
|
| 41 |
-
|
| 42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
-
model = YOLO('./data/yolo11n (2).pt').to(device)
|
| 44 |
-
if device == "cuda":
|
| 45 |
-
model.half()
|
| 46 |
-
|
| 47 |
-
def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str:
|
| 48 |
-
zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
|
| 49 |
-
try:
|
| 50 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_STORED) as zipf:
|
| 51 |
-
if os.path.exists(report_path):
|
| 52 |
-
zipf.write(report_path, os.path.basename(report_path))
|
| 53 |
-
if os.path.exists(video_path):
|
| 54 |
-
zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
|
| 55 |
-
if os.path.exists(chart_path):
|
| 56 |
-
zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
|
| 57 |
-
if os.path.exists(map_path):
|
| 58 |
-
zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
|
| 59 |
-
for file in detected_issues:
|
| 60 |
-
if os.path.exists(file):
|
| 61 |
-
zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
|
| 62 |
-
for root, _, files in os.walk(FLIGHT_LOG_DIR):
|
| 63 |
-
for file in files:
|
| 64 |
-
file_path = os.path.join(root, file)
|
| 65 |
-
zipf.write(file_path, os.path.join("flight_logs", file))
|
| 66 |
-
log_entries.append(f"Created ZIP: {zip_path}")
|
| 67 |
-
return zip_path
|
| 68 |
-
except Exception as e:
|
| 69 |
-
log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
|
| 70 |
-
return ""
|
| 71 |
-
|
| 72 |
-
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
| 73 |
-
map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
|
| 74 |
-
plt.figure(figsize=(4, 4))
|
| 75 |
-
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
| 76 |
-
plt.title("Issue Locations Map")
|
| 77 |
-
plt.xlabel("Longitude")
|
| 78 |
-
plt.ylabel("Latitude")
|
| 79 |
-
plt.legend()
|
| 80 |
-
plt.savefig(map_path)
|
| 81 |
-
plt.close()
|
| 82 |
-
return map_path
|
| 83 |
-
|
| 84 |
-
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
| 85 |
-
try:
|
| 86 |
-
lat = abs(gps_coord[0])
|
| 87 |
-
lon = abs(gps_coord[1])
|
| 88 |
-
lat_ref = "N" if gps_coord[0] >= 0 else "S"
|
| 89 |
-
lon_ref = "E" if gps_coord[1] >= 0 else "W"
|
| 90 |
-
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
|
| 91 |
-
exif_dict["GPS"] = {
|
| 92 |
-
piexif.GPSIFD.GPSLatitudeRef: lat_ref,
|
| 93 |
-
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
|
| 94 |
-
piexif.GPSIFD.GPSLongitudeRef: lon_ref,
|
| 95 |
-
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
|
| 96 |
-
}
|
| 97 |
-
piexif.insert(piexif.dump(exif_dict), image_path)
|
| 98 |
-
return True
|
| 99 |
-
except Exception as e:
|
| 100 |
-
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
|
| 101 |
-
return False
|
| 102 |
-
|
| 103 |
-
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
|
| 104 |
-
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
|
| 105 |
-
try:
|
| 106 |
-
with open(log_path, 'w', newline='') as csvfile:
|
| 107 |
-
writer = csv.writer(csvfile)
|
| 108 |
-
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
|
| 109 |
-
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
|
| 110 |
-
return log_path
|
| 111 |
-
except Exception as e:
|
| 112 |
-
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
|
| 113 |
-
return ""
|
| 114 |
-
|
| 115 |
-
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
|
| 116 |
-
height, width, _ = frame.shape
|
| 117 |
-
frame_resolution = width * height
|
| 118 |
-
if frame_resolution < 2_073_600:
|
| 119 |
-
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 2MP")
|
| 120 |
-
return False
|
| 121 |
-
if frame_resolution < input_resolution:
|
| 122 |
-
log_entries.append(f"Frame {frame_count}: Output resolution below input")
|
| 123 |
-
return False
|
| 124 |
-
return True
|
| 125 |
-
|
| 126 |
-
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 127 |
-
counts = Counter([det["label"] for det in detections])
|
| 128 |
-
return {
|
| 129 |
-
"items": [{"type": k, "count": v} for k, v in counts.items()],
|
| 130 |
-
"total_detections": len(detections),
|
| 131 |
-
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
def generate_line_chart() -> Optional[str]:
|
| 135 |
-
if not detected_counts:
|
| 136 |
-
return None
|
| 137 |
-
plt.figure(figsize=(4, 2))
|
| 138 |
-
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
|
| 139 |
-
plt.title("Detections Over Time")
|
| 140 |
-
plt.xlabel("Frame")
|
| 141 |
-
plt.ylabel("Count")
|
| 142 |
-
plt.grid(True)
|
| 143 |
-
plt.tight_layout()
|
| 144 |
-
chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
|
| 145 |
-
plt.savefig(chart_path)
|
| 146 |
-
plt.close()
|
| 147 |
-
return chart_path
|
| 148 |
-
|
| 149 |
-
def generate_report(
|
| 150 |
-
metrics: Dict[str, Any],
|
| 151 |
-
detected_issues: List[str],
|
| 152 |
-
gps_coordinates: List[List[float]],
|
| 153 |
-
all_detections: List[Dict[str, Any]],
|
| 154 |
-
frame_count: int,
|
| 155 |
-
total_time: float,
|
| 156 |
-
output_frames: int,
|
| 157 |
-
output_fps: float,
|
| 158 |
-
output_duration: float,
|
| 159 |
-
detection_frame_count: int,
|
| 160 |
-
chart_path: str,
|
| 161 |
-
map_path: str,
|
| 162 |
-
frame_times: List[float],
|
| 163 |
-
resize_times: List[float],
|
| 164 |
-
inference_times: List[float],
|
| 165 |
-
io_times: List[float]
|
| 166 |
-
) -> str:
|
| 167 |
-
log_entries.append("Generating report...")
|
| 168 |
-
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.html")
|
| 169 |
-
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 170 |
-
report_content = [
|
| 171 |
-
"<!DOCTYPE html>",
|
| 172 |
-
"<html lang='en'>",
|
| 173 |
-
"<head>",
|
| 174 |
-
"<meta charset='UTF-8'>",
|
| 175 |
-
"<title>NHAI Drone Survey Analysis Report</title>",
|
| 176 |
-
"<style>",
|
| 177 |
-
"body { font-family: Arial, sans-serif; margin: 40px; }",
|
| 178 |
-
"h1, h2, h3 { color: #333; }",
|
| 179 |
-
"ul { margin-left: 20px; }",
|
| 180 |
-
"table { border-collapse: collapse; width: 100%; margin: 10px 0; }",
|
| 181 |
-
"th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }",
|
| 182 |
-
"th { background-color: #f2f2f2; }",
|
| 183 |
-
"img { max-width: 600px; height: auto; margin: 10px 0; }",
|
| 184 |
-
"p.caption { font-weight: bold; margin: 5px 0; }",
|
| 185 |
-
"</style>",
|
| 186 |
-
"</head>",
|
| 187 |
-
"<body>",
|
| 188 |
-
"<h1>NHAI Drone Survey Analysis Report</h1>",
|
| 189 |
-
"",
|
| 190 |
-
"<h2>Project Details</h2>",
|
| 191 |
-
"<ul>",
|
| 192 |
-
"<li><strong>Project Name:</strong> NH-44 Delhi-Hyderabad Section (Package XYZ)</li>",
|
| 193 |
-
"<li><strong>Highway Section:</strong> Km 100 to Km 150</li>",
|
| 194 |
-
"<li><strong>State:</strong> Telangana</li>",
|
| 195 |
-
"<li><strong>Region:</strong> South</li>",
|
| 196 |
-
f"<li><strong>Survey Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
|
| 197 |
-
"<li><strong>Drone Service Provider:</strong> ABC Drone Services Pvt. Ltd.</li>",
|
| 198 |
-
"<li><strong>Technology Service Provider:</strong> XYZ AI Analytics Ltd.</li>",
|
| 199 |
-
f"<li><strong>Work Order Reference:</strong> Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ</li>",
|
| 200 |
-
"<li><strong>Report Prepared By:</strong> Nagasurendra, Data Analyst</li>",
|
| 201 |
-
f"<li><strong>Report Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
|
| 202 |
-
"</ul>",
|
| 203 |
-
"",
|
| 204 |
-
"<h2>1. Introduction</h2>",
|
| 205 |
-
"<p>This report consolidates drone survey results for NH-44 (Km 100–150) under Operations & Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.</p>",
|
| 206 |
-
"",
|
| 207 |
-
"<h2>2. Drone Survey Metadata</h2>",
|
| 208 |
-
"<ul>",
|
| 209 |
-
"<li><strong>Drone Speed:</strong> 5 m/s</li>",
|
| 210 |
-
"<li><strong>Drone Height:</strong> 60 m</li>",
|
| 211 |
-
"<li><strong>Camera Sensor:</strong> RGB, 12 MP</li>",
|
| 212 |
-
"<li><strong>Recording Type:</strong> JPEG, 90° nadir</li>",
|
| 213 |
-
"<li><strong>Image Overlap:</strong> 85%</li>",
|
| 214 |
-
"<li><strong>Flight Pattern:</strong> Single lap, ROW centered</li>",
|
| 215 |
-
"<li><strong>Geotagging:</strong> Enabled</li>",
|
| 216 |
-
"<li><strong>Satellite Lock:</strong> 12 satellites</li>",
|
| 217 |
-
"<li><strong>Terrain Follow Mode:</strong> Enabled</li>",
|
| 218 |
-
"</ul>",
|
| 219 |
-
"",
|
| 220 |
-
"<h2>3. Quality Check Results</h2>",
|
| 221 |
-
"<ul>",
|
| 222 |
-
"<li><strong>Resolution:</strong> 1920x1080</li>",
|
| 223 |
-
"<li><strong>Overlap:</strong> 85%</li>",
|
| 224 |
-
"<li><strong>Camera Angle:</strong> 90° nadir</li>",
|
| 225 |
-
"<li><strong>Drone Speed:</strong> ≤ 5 m/s</li>",
|
| 226 |
-
"<li><strong>Geotagging:</strong> 100% compliant</li>",
|
| 227 |
-
"<li><strong>QC Status:</strong> Passed</li>",
|
| 228 |
-
"</ul>",
|
| 229 |
-
"",
|
| 230 |
-
"<h2>4. AI/ML Analytics</h2>",
|
| 231 |
-
f"<p><strong>Total Frames Processed:</strong> {frame_count}</p>",
|
| 232 |
-
f"<p><strong>Detection Frames:</strong> {detection_frame_count} ({detection_frame_count/frame_count*100:.1f}%)</p>",
|
| 233 |
-
f"<p><strong>Total Detections:</strong> {metrics['total_detections']}</p>",
|
| 234 |
-
"<p><strong>Breakdown:</strong></p>",
|
| 235 |
-
"<ul>"
|
| 236 |
-
]
|
| 237 |
-
|
| 238 |
-
for item in metrics.get("items", []):
|
| 239 |
-
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
| 240 |
-
report_content.append(f"<li>{item['type']}: {item['count']} ({percentage:.1f}%)</li>")
|
| 241 |
-
report_content.extend([
|
| 242 |
-
"</ul>",
|
| 243 |
-
f"<p><strong>Processing Time:</strong> {total_time:.1f} seconds</p>",
|
| 244 |
-
f"<p><strong>Average Frame Time:</strong> {sum(frame_times)/len(frame_times):.1f} ms</p>" if frame_times else "<p><strong>Average Frame Time:</strong> N/A</p>",
|
| 245 |
-
f"<p><strong>Average Resize Time:</strong> {sum(resize_times)/len(resize_times):.1f} ms</p>" if resize_times else "<p><strong>Average Resize Time:</strong> N/A</p>",
|
| 246 |
-
f"<p><strong>Average Inference Time:</strong> {sum(inference_times)/len(inference_times):.1f} ms</p>" if inference_times else "<p><strong>Average Inference Time:</strong> N/A</p>",
|
| 247 |
-
f"<p><strong>Average I/O Time:</strong> {sum(io_times)/len(io_times):.1f} ms</p>" if io_times else "<p><strong>Average I/O Time:</strong> N/A</p>",
|
| 248 |
-
f"<p><strong>Timestamp:</strong> {metrics.get('timestamp', 'N/A')}</p>",
|
| 249 |
-
"<p><strong>Summary:</strong> Potholes and cracks detected in high-traffic areas.</p>",
|
| 250 |
-
"",
|
| 251 |
-
"<h2>5. Output File Structure</h2>",
|
| 252 |
-
"<p>ZIP file contains:</p>",
|
| 253 |
-
"<ul>",
|
| 254 |
-
f"<li><code>drone_analysis_report_{timestamp}.html</code>: This report</li>",
|
| 255 |
-
"<li><code>outputs/processed_output.mp4</code>: Processed video with annotations</li>",
|
| 256 |
-
f"<li><code>outputs/chart_{timestamp}.png</code>: Detection trend chart</li>",
|
| 257 |
-
f"<li><code>outputs/map_{timestamp}.png</code>: Issue locations map</li>",
|
| 258 |
-
"<li><code>captured_frames/detected_<frame>.jpg</code>: Geotagged images for detected issues</li>",
|
| 259 |
-
"<li><code>flight_logs/flight_log_<frame>.csv</code>: Flight logs matching image frames</li>",
|
| 260 |
-
"</ul>",
|
| 261 |
-
"<p><strong>Note:</strong> Images and logs share frame numbers (e.g., <code>detected_000001.jpg</code> corresponds to <code>flight_log_000001.csv</code>).</p>",
|
| 262 |
-
"",
|
| 263 |
-
"<h2>6. Geotagged Images</h2>",
|
| 264 |
-
f"<p><strong>Total Images:</strong> {len(detected_issues)}</p>",
|
| 265 |
-
f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></p>",
|
| 266 |
-
"",
|
| 267 |
-
"<table>",
|
| 268 |
-
"<tr><th>Frame</th><th>Issue Type</th><th>GPS (Lat, Lon)</th><th>Timestamp</th><th>Confidence</th><th>Image Path</th></tr>"
|
| 269 |
-
])
|
| 270 |
-
|
| 271 |
-
for detection in all_detections[:100]:
|
| 272 |
-
report_content.append(
|
| 273 |
-
f"<tr><td>{detection['frame']:06d}</td><td>{detection['label']}</td><td>({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f})</td><td>{detection['timestamp']}</td><td>{detection['conf']:.1f}</td><td>captured_frames/{os.path.basename(detection['path'])}</td></tr>"
|
| 274 |
-
)
|
| 275 |
-
|
| 276 |
-
report_content.extend([
|
| 277 |
-
"</table>",
|
| 278 |
-
"",
|
| 279 |
-
"<h2>7. Flight Logs</h2>",
|
| 280 |
-
f"<p><strong>Total Logs:</strong> {len(detected_issues)}</p>",
|
| 281 |
-
f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></p>",
|
| 282 |
-
"",
|
| 283 |
-
"<table>",
|
| 284 |
-
"<tr><th>Frame</th><th>Timestamp</th><th>Latitude</th><th>Longitude</th><th>Speed (m/s)</th><th>Satellites</th><th>Altitude (m)</th><th>Log Path</th></tr>"
|
| 285 |
-
])
|
| 286 |
-
|
| 287 |
-
for detection in all_detections[:100]:
|
| 288 |
-
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
|
| 289 |
-
report_content.append(
|
| 290 |
-
f"<tr><td>{detection['frame']:06d}</td><td>{detection['timestamp']}</td><td>{detection['gps'][0]:.6f}</td><td>{detection['gps'][1]:.6f}</td><td>5.0</td><td>12</td><td>60</td><td>{log_path}</td></tr>"
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
report_content.extend([
|
| 294 |
-
"</table>",
|
| 295 |
-
"",
|
| 296 |
-
"<h2>8. Processed Video</h2>",
|
| 297 |
-
f"<p><strong>Path:</strong> outputs/processed_output.mp4</p>",
|
| 298 |
-
f"<p><strong>Frames:</strong> {output_frames}</p>",
|
| 299 |
-
f"<p><strong>FPS:</strong> {output_fps:.1f}</p>",
|
| 300 |
-
f"<p><strong>Duration:</strong> {output_duration:.1f} seconds</p>",
|
| 301 |
-
"",
|
| 302 |
-
"<h2>9. Visualizations</h2>",
|
| 303 |
-
f"<p><strong>Detection Trend Chart:</strong> outputs/chart_{timestamp}.png</p>",
|
| 304 |
-
f"<p><strong>Issue Locations Map:</strong> outputs/map_{timestamp}.png</p>",
|
| 305 |
-
"",
|
| 306 |
-
"<h2>10. Processing Timestamps</h2>",
|
| 307 |
-
f"<p><strong>Total Processing Time:</strong> {total_time:.1f} seconds</p>",
|
| 308 |
-
"<p><strong>Log Entries (Last 10):</strong></p>",
|
| 309 |
-
"<ul>"
|
| 310 |
-
])
|
| 311 |
-
|
| 312 |
-
for entry in log_entries[-10:]:
|
| 313 |
-
report_content.append(f"<li>{entry}</li>")
|
| 314 |
-
|
| 315 |
-
report_content.extend([
|
| 316 |
-
"</ul>",
|
| 317 |
-
"",
|
| 318 |
-
"<h2>11. Stakeholder Validation</h2>",
|
| 319 |
-
"<ul>",
|
| 320 |
-
"<li><strong>AE/IE Comments:</strong> [Pending]</li>",
|
| 321 |
-
"<li><strong>PD/RO Comments:</strong> [Pending]</li>",
|
| 322 |
-
"</ul>",
|
| 323 |
-
"",
|
| 324 |
-
"<h2>12. Recommendations</h2>",
|
| 325 |
-
"<ul>",
|
| 326 |
-
"<li>Repair potholes in high-traffic areas.</li>",
|
| 327 |
-
"<li>Seal cracks to prevent further degradation.</li>",
|
| 328 |
-
"<li>Schedule a follow-up survey.</li>",
|
| 329 |
-
"</ul>",
|
| 330 |
-
"",
|
| 331 |
-
"<h2>13. Data Lake References</h2>",
|
| 332 |
-
"<ul>",
|
| 333 |
-
f"<li><strong>Images:</strong> <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></li>",
|
| 334 |
-
f"<li><strong>Flight Logs:</strong> <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></li>",
|
| 335 |
-
f"<li><strong>Video:</strong> <code>/project_xyz/videos/processed_output_{timestamp}.mp4</code></li>",
|
| 336 |
-
f"<li><strong>DAMS Dashboard:</strong> <code>/project_xyz/dams/{datetime.now().strftime('%Y%m%d')}</code></li>",
|
| 337 |
-
"</ul>",
|
| 338 |
-
"",
|
| 339 |
-
"<h2>14. Captured Images</h2>",
|
| 340 |
-
"<p>Below are the embedded images from the captured frames directory showing detected issues:</p>",
|
| 341 |
-
""
|
| 342 |
-
])
|
| 343 |
-
|
| 344 |
-
for image_path in detected_issues:
|
| 345 |
-
if os.path.exists(image_path):
|
| 346 |
-
image_name = os.path.basename(image_path)
|
| 347 |
-
try:
|
| 348 |
-
with open(image_path, "rb") as image_file:
|
| 349 |
-
base64_string = base64.b64encode(image_file.read()).decode('utf-8')
|
| 350 |
-
report_content.append(f"<img src='data:image/jpeg;base64,{base64_string}' alt='{image_name}'>")
|
| 351 |
-
report_content.append(f"<p class='caption'>Image: {image_name}</p>")
|
| 352 |
-
report_content.append("")
|
| 353 |
-
except Exception as e:
|
| 354 |
-
log_entries.append(f"Error: Failed to encode image {image_name} to base64: {str(e)}")
|
| 355 |
-
|
| 356 |
-
report_content.extend([
|
| 357 |
-
"</body>",
|
| 358 |
-
"</html>"
|
| 359 |
-
])
|
| 360 |
-
|
| 361 |
-
try:
|
| 362 |
-
with open(report_path, 'w') as f:
|
| 363 |
-
f.write("\n".join(report_content))
|
| 364 |
-
log_entries.append(f"Report saved at: {report_path}")
|
| 365 |
-
return report_path
|
| 366 |
-
except Exception as e:
|
| 367 |
-
log_entries.append(f"Error: Failed to save report: {str(e)}")
|
| 368 |
-
return ""
|
| 369 |
-
|
| 370 |
-
def process_video(video, resize_width=1920, resize_height=1080, frame_skip=10):
|
| 371 |
-
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
| 372 |
-
frame_count = 0
|
| 373 |
-
detected_counts.clear()
|
| 374 |
-
detected_issues.clear()
|
| 375 |
-
gps_coordinates.clear()
|
| 376 |
-
log_entries.clear()
|
| 377 |
-
last_metrics = {}
|
| 378 |
-
|
| 379 |
-
if video is None:
|
| 380 |
-
log_entries.append("Error: No video uploaded")
|
| 381 |
-
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None
|
| 382 |
-
|
| 383 |
-
log_entries.append("Starting video processing...")
|
| 384 |
-
start_time = time.time()
|
| 385 |
-
cap = cv2.VideoCapture(video)
|
| 386 |
if not cap.isOpened():
|
| 387 |
-
|
| 388 |
-
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None
|
| 389 |
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 395 |
-
log_entries.append(f"Input video: {frame_width}x{frame_height} at {fps} FPS, {total_frames} frames")
|
| 396 |
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (out_width, out_height))
|
| 400 |
-
if not out.isOpened():
|
| 401 |
-
log_entries.append("Error: Failed to initialize video writer")
|
| 402 |
-
cap.release()
|
| 403 |
-
return None, json.dumps({"error": "Video writer failed"}, indent=2), "\n".join(log_entries), [], None, None, None
|
| 404 |
|
| 405 |
-
|
| 406 |
-
all_detections = []
|
| 407 |
-
frame_times = []
|
| 408 |
-
inference_times = []
|
| 409 |
-
resize_times = []
|
| 410 |
-
io_times = []
|
| 411 |
-
detection_frame_count = 0
|
| 412 |
-
output_frame_count = 0
|
| 413 |
-
last_annotated_frame = None
|
| 414 |
-
disk_space_threshold = 1024 * 1024 * 1024
|
| 415 |
-
|
| 416 |
-
while True:
|
| 417 |
ret, frame = cap.read()
|
| 418 |
if not ret:
|
| 419 |
break
|
| 420 |
-
frame_count += 1
|
| 421 |
-
if frame_count % frame_skip != 0:
|
| 422 |
-
continue
|
| 423 |
-
processed_frames += 1
|
| 424 |
-
frame_start = time.time()
|
| 425 |
-
|
| 426 |
-
if os.statvfs(os.path.dirname(output_path)).f_frsize * os.statvfs(os.path.dirname(output_path)).f_bavail < disk_space_threshold:
|
| 427 |
-
log_entries.append("Error: Insufficient disk space")
|
| 428 |
-
break
|
| 429 |
-
|
| 430 |
-
frame = cv2.resize(frame, (out_width, out_height))
|
| 431 |
-
resize_times.append((time.time() - frame_start) * 1000)
|
| 432 |
-
|
| 433 |
-
if not check_image_quality(frame, input_resolution):
|
| 434 |
-
continue
|
| 435 |
-
|
| 436 |
-
inference_start = time.time()
|
| 437 |
-
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
| 438 |
-
annotated_frame = results[0].plot()
|
| 439 |
-
inference_times.append((time.time() - inference_start) * 1000)
|
| 440 |
-
|
| 441 |
-
frame_timestamp = frame_count / fps if fps > 0 else 0
|
| 442 |
-
timestamp_str = f"{int(frame_timestamp // 60):02d}:{int(frame_timestamp % 60):02d}"
|
| 443 |
-
|
| 444 |
-
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
| 445 |
-
gps_coordinates.append(gps_coord)
|
| 446 |
-
|
| 447 |
-
io_start = time.time()
|
| 448 |
-
frame_detections = []
|
| 449 |
-
for detection in results[0].boxes:
|
| 450 |
-
cls = int(detection.cls)
|
| 451 |
-
conf = float(detection.conf)
|
| 452 |
-
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
| 453 |
-
label = model.names[cls]
|
| 454 |
-
if label in DETECTION_CLASSES:
|
| 455 |
-
detection_data = {
|
| 456 |
-
"label": label,
|
| 457 |
-
"box": box,
|
| 458 |
-
"conf": conf,
|
| 459 |
-
"gps": gps_coord,
|
| 460 |
-
"timestamp": timestamp_str,
|
| 461 |
-
"frame": frame_count,
|
| 462 |
-
"path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
|
| 463 |
-
}
|
| 464 |
-
frame_detections.append(detection_data)
|
| 465 |
-
log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")
|
| 466 |
-
|
| 467 |
-
if frame_detections:
|
| 468 |
-
detection_frame_count += 1
|
| 469 |
-
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
| 470 |
-
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
|
| 471 |
-
if cv2.imwrite(captured_frame_path, annotated_frame):
|
| 472 |
-
if write_geotag(captured_frame_path, gps_coord):
|
| 473 |
-
detected_issues.append(captured_frame_path)
|
| 474 |
-
if len(detected_issues) > MAX_IMAGES:
|
| 475 |
-
os.remove(detected_issues.pop(0))
|
| 476 |
-
else:
|
| 477 |
-
log_entries.append(f"Frame {frame_count}: Geotagging failed")
|
| 478 |
-
else:
|
| 479 |
-
log_entries.append(f"Error: Failed to save frame at {captured_frame_path}")
|
| 480 |
-
write_flight_log(frame_count, gps_coord, timestamp_str)
|
| 481 |
-
|
| 482 |
-
io_times.append((time.time() - io_start) * 1000)
|
| 483 |
-
|
| 484 |
-
out.write(annotated_frame)
|
| 485 |
-
output_frame_count += 1
|
| 486 |
-
last_annotated_frame = annotated_frame
|
| 487 |
-
if frame_skip > 1:
|
| 488 |
-
for _ in range(frame_skip - 1):
|
| 489 |
-
out.write(annotated_frame)
|
| 490 |
-
output_frame_count += 1
|
| 491 |
-
|
| 492 |
-
detected_counts.append(len(frame_detections))
|
| 493 |
-
all_detections.extend(frame_detections)
|
| 494 |
-
|
| 495 |
-
frame_times.append((time.time() - frame_start) * 1000)
|
| 496 |
-
if len(log_entries) > 50:
|
| 497 |
-
log_entries.pop(0)
|
| 498 |
-
|
| 499 |
-
if time.time() - start_time > 600:
|
| 500 |
-
log_entries.append("Error: Processing timeout after 600 seconds")
|
| 501 |
-
break
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
-
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
-
out.release()
|
| 510 |
cap.release()
|
| 511 |
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
| 528 |
-
report_path = generate_report(
|
| 529 |
-
last_metrics,
|
| 530 |
-
detected_issues,
|
| 531 |
-
gps_coordinates,
|
| 532 |
-
all_detections,
|
| 533 |
-
frame_count,
|
| 534 |
-
total_time,
|
| 535 |
-
output_frames,
|
| 536 |
-
output_fps,
|
| 537 |
-
output_duration,
|
| 538 |
-
detection_frame_count,
|
| 539 |
-
chart_path,
|
| 540 |
-
map_path,
|
| 541 |
-
frame_times,
|
| 542 |
-
resize_times,
|
| 543 |
-
inference_times,
|
| 544 |
-
io_times
|
| 545 |
-
)
|
| 546 |
-
output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path)
|
| 547 |
-
|
| 548 |
-
return (
|
| 549 |
-
output_path,
|
| 550 |
-
json.dumps(last_metrics, indent=2),
|
| 551 |
-
"\n".join(log_entries[-10:]),
|
| 552 |
-
detected_issues,
|
| 553 |
-
chart_path,
|
| 554 |
-
map_path,
|
| 555 |
-
output_zip_path
|
| 556 |
-
)
|
| 557 |
-
|
| 558 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
| 559 |
-
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
| 560 |
with gr.Row():
|
| 561 |
-
with gr.Column(
|
| 562 |
video_input = gr.Video(label="Upload Video")
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
|
|
|
|
|
|
| 583 |
fn=process_video,
|
| 584 |
-
inputs=[video_input,
|
| 585 |
-
outputs=[
|
| 586 |
-
video_output,
|
| 587 |
-
metrics_output,
|
| 588 |
-
logs_output,
|
| 589 |
-
issue_gallery,
|
| 590 |
-
chart_output,
|
| 591 |
-
map_output,
|
| 592 |
-
output_zip_download
|
| 593 |
-
]
|
| 594 |
)
|
| 595 |
|
| 596 |
if __name__ == "__main__":
|
| 597 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from ultralytics import YOLO
|
| 5 |
+
import os
|
| 6 |
+
import tempfile
|
| 7 |
+
from moviepy.editor import ImageSequenceClip
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
# Load both YOLO models
|
| 11 |
+
model_yolo11 = YOLO('./data/yolo11n.pt')
|
| 12 |
+
model_best = YOLO('./data/best.pt')
|
| 13 |
+
|
| 14 |
+
def process_video(video_path, model_name, conf_threshold=0.4):
|
| 15 |
+
"""
|
| 16 |
+
Process the input video frame by frame using the selected YOLO model,
|
| 17 |
+
draw bounding boxes, and return the processed video path.
|
| 18 |
+
"""
|
| 19 |
+
# Select model based on user input
|
| 20 |
+
model = model_yolo11 if model_name == "YOLO11n" else model_best
|
| 21 |
+
|
| 22 |
+
# Open video capture
|
| 23 |
+
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
if not cap.isOpened():
|
| 25 |
+
raise ValueError("Could not open video file")
|
|
|
|
| 26 |
|
| 27 |
+
# Get video properties
|
| 28 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 29 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 30 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# Store processed frames
|
| 33 |
+
processed_frames = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
while cap.isOpened():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
ret, frame = cap.read()
|
| 37 |
if not ret:
|
| 38 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Perform object detection
|
| 41 |
+
results = model.predict(
|
| 42 |
+
source=frame,
|
| 43 |
+
conf=conf_threshold,
|
| 44 |
+
imgsz=640,
|
| 45 |
+
show_labels=True,
|
| 46 |
+
show_conf=True
|
| 47 |
+
)
|
| 48 |
|
| 49 |
+
# Draw bounding boxes on the frame
|
| 50 |
+
for result in results:
|
| 51 |
+
im_array = result.plot() # Plot bounding boxes
|
| 52 |
+
processed_frames.append(im_array[..., ::-1]) # Convert BGR to RGB
|
| 53 |
|
|
|
|
| 54 |
cap.release()
|
| 55 |
|
| 56 |
+
# Save processed frames to a temporary video file
|
| 57 |
+
temp_video_path = os.path.join(tempfile.gettempdir(), "output.mp4")
|
| 58 |
+
clip = ImageSequenceClip(processed_frames, fps=fps)
|
| 59 |
+
clip.write_videofile(temp_video_path, codec='libx264')
|
| 60 |
+
|
| 61 |
+
return temp_video_path
|
| 62 |
+
|
| 63 |
+
# Define Gradio interface
|
| 64 |
+
with gr.Blocks() as app:
|
| 65 |
+
gr.HTML("""
|
| 66 |
+
<h1 style='text-align: center'>
|
| 67 |
+
Video Object Detection with YOLO Models
|
| 68 |
+
</h1>
|
| 69 |
+
""")
|
| 70 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
| 72 |
+
with gr.Column():
|
| 73 |
video_input = gr.Video(label="Upload Video")
|
| 74 |
+
model_choice = gr.Dropdown(
|
| 75 |
+
choices=["YOLO11n", "Best Model"],
|
| 76 |
+
label="Select Model",
|
| 77 |
+
value="YOLO11n"
|
| 78 |
+
)
|
| 79 |
+
conf_threshold = gr.Slider(
|
| 80 |
+
label="Confidence Threshold",
|
| 81 |
+
minimum=0.0,
|
| 82 |
+
maximum=1.0,
|
| 83 |
+
step=0.05,
|
| 84 |
+
value=0.4
|
| 85 |
+
)
|
| 86 |
+
process_button = gr.Button("Process Video")
|
| 87 |
+
|
| 88 |
+
with gr.Column():
|
| 89 |
+
video_output = gr.Video(
|
| 90 |
+
label="Processed Video",
|
| 91 |
+
streaming=True,
|
| 92 |
+
autoplay=True
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
process_button.click(
|
| 96 |
fn=process_video,
|
| 97 |
+
inputs=[video_input, model_choice, conf_threshold],
|
| 98 |
+
outputs=[video_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
)
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
+
app.launch()
|