Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,113 +1,60 @@
|
|
| 1 |
-
|
| 2 |
-
import os
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import cv2
|
| 5 |
-
import numpy as np
|
| 6 |
from ultralytics import YOLO
|
| 7 |
-
import tempfile
|
| 8 |
-
import torch
|
| 9 |
-
import ultralytics.nn.tasks
|
| 10 |
-
|
| 11 |
-
# Set Ultralytics config path
|
| 12 |
-
os.environ['YOLO_CONFIG_DIR'] = '/tmp/Ultralytics'
|
| 13 |
-
|
| 14 |
-
# Custom function to load model with trusted weights
|
| 15 |
-
def load_model_with_trusted_weights(model_path):
|
| 16 |
-
with torch.serialization.safe_globals([
|
| 17 |
-
ultralytics.nn.tasks.DetectionModel,
|
| 18 |
-
torch.nn.modules.container.Sequential
|
| 19 |
-
]):
|
| 20 |
-
return YOLO(model_path)
|
| 21 |
-
|
| 22 |
-
# Load both YOLO models
|
| 23 |
-
model_yolo11 = load_model_with_trusted_weights('./data/yolo11n.pt')
|
| 24 |
-
model_best = load_model_with_trusted_weights('./data/best.pt')
|
| 25 |
-
|
| 26 |
-
def process_video(video_path, model_name, conf_threshold=0.4):
|
| 27 |
-
"""
|
| 28 |
-
Process the input video frame by frame using the selected YOLO model,
|
| 29 |
-
draw bounding boxes, and return the processed video path.
|
| 30 |
-
"""
|
| 31 |
-
# Select model
|
| 32 |
-
model = model_yolo11 if model_name == "YOLO11n" else model_best
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
raise ValueError("Could not open video file")
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
|
| 48 |
|
| 49 |
while cap.isOpened():
|
| 50 |
ret, frame = cap.read()
|
| 51 |
if not ret:
|
| 52 |
break
|
| 53 |
-
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
cap.release()
|
| 69 |
out.release()
|
| 70 |
-
cv2.destroyAllWindows()
|
| 71 |
|
| 72 |
-
return
|
| 73 |
|
| 74 |
# Gradio interface
|
| 75 |
-
|
| 76 |
-
gr.HTML("""
|
| 77 |
-
<h1 style='text-align: center'>
|
| 78 |
-
Video Object Detection with YOLO Models
|
| 79 |
-
</h1>
|
| 80 |
-
""")
|
| 81 |
-
|
| 82 |
-
with gr.Row():
|
| 83 |
-
with gr.Column():
|
| 84 |
-
video_input = gr.Video(label="Upload Video")
|
| 85 |
-
model_choice = gr.Dropdown(
|
| 86 |
-
choices=["YOLO11n", "Best Model"],
|
| 87 |
-
label="Select Model",
|
| 88 |
-
value="YOLO11n"
|
| 89 |
-
)
|
| 90 |
-
conf_threshold = gr.Slider(
|
| 91 |
-
label="Confidence Threshold",
|
| 92 |
-
minimum=0.0,
|
| 93 |
-
maximum=1.0,
|
| 94 |
-
step=0.05,
|
| 95 |
-
value=0.4
|
| 96 |
-
)
|
| 97 |
-
process_button = gr.Button("Process Video")
|
| 98 |
-
|
| 99 |
-
with gr.Column():
|
| 100 |
-
video_output = gr.Video(
|
| 101 |
-
label="Processed Video",
|
| 102 |
-
streaming=True,
|
| 103 |
-
autoplay=True
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
process_button.click(
|
| 107 |
-
fn=process_video,
|
| 108 |
-
inputs=[video_input, model_choice, conf_threshold],
|
| 109 |
-
outputs=[video_output]
|
| 110 |
-
)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
import cv2
|
|
|
|
| 4 |
from ultralytics import YOLO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load YOLO models
|
| 7 |
+
model_yolo11 = YOLO('./data/yolo11n.pt')
|
| 8 |
+
model_best = YOLO('./data/best.pt')
|
|
|
|
| 9 |
|
| 10 |
+
def process_video(video):
|
| 11 |
+
# Read video input
|
| 12 |
+
cap = cv2.VideoCapture(video.name)
|
| 13 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 14 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 15 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 16 |
|
| 17 |
+
# Create a VideoWriter object to save the output video
|
| 18 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4
|
| 19 |
+
out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height))
|
|
|
|
| 20 |
|
| 21 |
while cap.isOpened():
|
| 22 |
ret, frame = cap.read()
|
| 23 |
if not ret:
|
| 24 |
break
|
| 25 |
+
|
| 26 |
+
# Use both YOLO models for detection
|
| 27 |
+
results_yolo11 = model_yolo11(frame)
|
| 28 |
+
results_best = model_best(frame)
|
| 29 |
+
|
| 30 |
+
# Combine the results from both models
|
| 31 |
+
# For simplicity, we will overlay bounding boxes and labels from both models
|
| 32 |
+
for result in results_yolo11:
|
| 33 |
+
boxes = result.boxes
|
| 34 |
+
for box in boxes:
|
| 35 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
| 36 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 37 |
+
label = f"YOLOv11: {box.cls[0]} - {box.conf[0]:.2f}"
|
| 38 |
+
cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 39 |
+
|
| 40 |
+
for result in results_best:
|
| 41 |
+
boxes = result.boxes
|
| 42 |
+
for box in boxes:
|
| 43 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
| 44 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
| 45 |
+
label = f"Best: {box.cls[0]} - {box.conf[0]:.2f}"
|
| 46 |
+
cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
| 47 |
+
|
| 48 |
+
# Write the processed frame to the output video
|
| 49 |
+
out.write(frame)
|
| 50 |
|
| 51 |
cap.release()
|
| 52 |
out.release()
|
|
|
|
| 53 |
|
| 54 |
+
return 'output_video.mp4'
|
| 55 |
|
| 56 |
# Gradio interface
|
| 57 |
+
iface = gr.Interface(fn=process_video, inputs=gr.Video(), outputs=gr.Video(), live=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Launch the app
|
| 60 |
+
iface.launch()
|