Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,3 +22,84 @@ model.save(os.path.join(save_dir, 'best.pt'))
|
|
| 22 |
|
| 23 |
# Print confirmation
|
| 24 |
print("Model saved to:", os.path.join(save_dir, 'best.pt'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Print confirmation
|
| 24 |
print("Model saved to:", os.path.join(save_dir, 'best.pt'))
|
| 25 |
+
from ultralytics import YOLO
|
| 26 |
+
import gradio as gr
|
| 27 |
+
import cv2
|
| 28 |
+
import os
|
| 29 |
+
import tempfile
|
| 30 |
+
|
| 31 |
+
# Load the trained YOLO model
|
| 32 |
+
model = YOLO("./runs/detect/train/weights/best.pt") # Path to your trained model
|
| 33 |
+
|
| 34 |
+
def process_video(video_path):
|
| 35 |
+
"""
|
| 36 |
+
Process the input video using the YOLO model and save the output with bounding boxes.
|
| 37 |
+
Returns the path to the output video.
|
| 38 |
+
"""
|
| 39 |
+
# Create a temporary file for the output video
|
| 40 |
+
output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 41 |
+
|
| 42 |
+
# Open the input video
|
| 43 |
+
cap = cv2.VideoCapture(video_path)
|
| 44 |
+
if not cap.isOpened():
|
| 45 |
+
raise ValueError("Error opening video file")
|
| 46 |
+
|
| 47 |
+
# Get video properties
|
| 48 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 49 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 50 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 51 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 52 |
+
|
| 53 |
+
# Define the codec and create VideoWriter object
|
| 54 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Use 'mp4v' for MP4 format
|
| 55 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 56 |
+
|
| 57 |
+
# Process each frame
|
| 58 |
+
while cap.isOpened():
|
| 59 |
+
ret, frame = cap.read()
|
| 60 |
+
if not ret:
|
| 61 |
+
break
|
| 62 |
+
|
| 63 |
+
# Perform YOLO inference on the frame
|
| 64 |
+
results = model(frame)
|
| 65 |
+
|
| 66 |
+
# Draw bounding boxes and labels on the frame
|
| 67 |
+
annotated_frame = results[0].plot() # Ultralytics provides a plot method to draw boxes
|
| 68 |
+
|
| 69 |
+
# Write the annotated frame to the output video
|
| 70 |
+
out.write(annotated_frame)
|
| 71 |
+
|
| 72 |
+
# Release resources
|
| 73 |
+
cap.release()
|
| 74 |
+
out.release()
|
| 75 |
+
cv2.destroyAllWindows()
|
| 76 |
+
|
| 77 |
+
return output_path
|
| 78 |
+
|
| 79 |
+
def gradio_interface(video):
|
| 80 |
+
"""
|
| 81 |
+
Gradio interface function to handle video input and return the processed video.
|
| 82 |
+
"""
|
| 83 |
+
if video is None:
|
| 84 |
+
return "Please upload a video file."
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
# Process the video and get the output path
|
| 88 |
+
output_video_path = process_video(video)
|
| 89 |
+
|
| 90 |
+
# Return the output video for Gradio to display
|
| 91 |
+
return output_video_path
|
| 92 |
+
except Exception as e:
|
| 93 |
+
return f"Error processing video: {str(e)}"
|
| 94 |
+
|
| 95 |
+
# Create Gradio interface
|
| 96 |
+
iface = gr.Interface(
|
| 97 |
+
fn=gradio_interface,
|
| 98 |
+
inputs=gr.Video(label="Upload Video"),
|
| 99 |
+
outputs=gr.Video(label="Processed Video with Detections"),
|
| 100 |
+
title="YOLOv11 Object Detection on Video",
|
| 101 |
+
description="Upload a video to run object detection using a trained YOLOv11 model."
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Launch the Gradio interface
|
| 105 |
+
iface.launch()
|