Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ from ultralytics import YOLO
|
|
14 |
import ultralytics
|
15 |
import time
|
16 |
import piexif
|
17 |
-
import
|
18 |
|
19 |
# Set YOLO config directory
|
20 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
@@ -44,9 +44,9 @@ detected_issues: List[str] = []
|
|
44 |
gps_coordinates: List[List[float]] = []
|
45 |
last_metrics: Dict[str, Any] = {}
|
46 |
frame_count: int = 0
|
47 |
-
SAVE_IMAGE_INTERVAL = 1
|
48 |
|
49 |
-
# Detection classes
|
50 |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
51 |
|
52 |
# Debug: Check environment
|
@@ -60,9 +60,24 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
60 |
print(f"Using device: {device}")
|
61 |
model = YOLO('./data/best.pt').to(device)
|
62 |
if device == "cuda":
|
63 |
-
model.half()
|
64 |
print(f"Model classes: {model.names}")
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
67 |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
68 |
plt.figure(figsize=(4, 4))
|
@@ -111,9 +126,9 @@ def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -
|
|
111 |
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
|
112 |
height, width, _ = frame.shape
|
113 |
frame_resolution = width * height
|
114 |
-
if frame_resolution < 12_000_000:
|
115 |
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} ({frame_resolution/1e6:.2f}MP) below 12MP, non-compliant")
|
116 |
-
if frame_resolution < input_resolution:
|
117 |
log_entries.append(f"Frame {frame_count}: Output resolution {width}x{height} below input resolution")
|
118 |
return False
|
119 |
return True
|
@@ -141,10 +156,6 @@ def generate_line_chart() -> Optional[str]:
|
|
141 |
plt.close()
|
142 |
return chart_path
|
143 |
|
144 |
-
def generate_download_zip():
|
145 |
-
shutil.make_archive("outputs_bundle", 'zip', OUTPUT_DIR)
|
146 |
-
return "outputs_bundle.zip"
|
147 |
-
|
148 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
149 |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
150 |
frame_count = 0
|
@@ -157,14 +168,14 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
157 |
if video is None:
|
158 |
log_entries.append("Error: No video uploaded")
|
159 |
logging.error("No video uploaded")
|
160 |
-
return
|
161 |
|
162 |
start_time = time.time()
|
163 |
cap = cv2.VideoCapture(video)
|
164 |
if not cap.isOpened():
|
165 |
log_entries.append("Error: Could not open video file")
|
166 |
logging.error("Could not open video file")
|
167 |
-
return
|
168 |
|
169 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
170 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
@@ -172,36 +183,25 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
172 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
173 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
174 |
expected_duration = total_frames / fps if fps > 0 else 0
|
175 |
-
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
|
176 |
-
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
|
177 |
-
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
|
178 |
|
179 |
out_width, out_height = resize_width, resize_height
|
180 |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
temp_output_path = os.path.join(OUTPUT_DIR, f"processed_output{ext}")
|
186 |
-
out = cv2.VideoWriter(temp_output_path, fourcc, fps, (out_width, out_height))
|
187 |
-
if out.isOpened():
|
188 |
-
output_path = temp_output_path
|
189 |
-
log_entries.append(f"Using codec: {codec}, output: {output_path}")
|
190 |
-
logging.info(f"Using codec: {codec}, output: {output_path}")
|
191 |
-
break
|
192 |
-
else:
|
193 |
-
log_entries.append(f"Failed to initialize codec: {codec}")
|
194 |
-
logging.warning(f"Failed to initialize codec: {codec}")
|
195 |
-
|
196 |
-
if not out or not out.isOpened():
|
197 |
-
log_entries.append("Error: All codecs failed to initialize video writer")
|
198 |
-
logging.error("All codecs failed to initialize video writer")
|
199 |
cap.release()
|
200 |
-
return
|
201 |
|
202 |
processed_frames = 0
|
203 |
all_detections = []
|
204 |
frame_times = []
|
|
|
|
|
|
|
205 |
detection_frame_count = 0
|
206 |
output_frame_count = 0
|
207 |
last_annotated_frame = None
|
@@ -222,13 +222,20 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
222 |
processed_frames += 1
|
223 |
frame_start = time.time()
|
224 |
|
|
|
|
|
225 |
frame = cv2.resize(frame, (out_width, out_height))
|
|
|
|
|
226 |
if not check_image_quality(frame, input_resolution):
|
227 |
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution")
|
228 |
continue
|
229 |
|
|
|
|
|
230 |
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
231 |
annotated_frame = results[0].plot()
|
|
|
232 |
|
233 |
frame_timestamp = frame_count / fps if fps > 0 else 0
|
234 |
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
|
@@ -236,6 +243,7 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
236 |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
237 |
gps_coordinates.append(gps_coord)
|
238 |
|
|
|
239 |
frame_detections = []
|
240 |
for detection in results[0].boxes:
|
241 |
cls = int(detection.cls)
|
@@ -282,6 +290,8 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
282 |
"frame": frame_count
|
283 |
})
|
284 |
|
|
|
|
|
285 |
out.write(annotated_frame)
|
286 |
output_frame_count += 1
|
287 |
last_annotated_frame = annotated_frame
|
@@ -295,20 +305,15 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
295 |
|
296 |
frame_time = (time.time() - frame_start) * 1000
|
297 |
frame_times.append(frame_time)
|
298 |
-
|
299 |
-
detection_summary = {
|
300 |
-
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
301 |
-
"video_timestamp": timestamp_str,
|
302 |
-
"frame": frame_count,
|
303 |
-
"gps": gps_coord,
|
304 |
-
"processing_time_ms": frame_time,
|
305 |
-
"detections": {label: sum(1 for det in frame_detections if det["label"] == label) for label in DETECTION_CLASSES}
|
306 |
-
}
|
307 |
-
data_lake_submission["analytics"].append(detection_summary)
|
308 |
-
log_entries.append(json.dumps(detection_summary, indent=2))
|
309 |
if len(log_entries) > 50:
|
310 |
log_entries.pop(0)
|
311 |
|
|
|
|
|
|
|
|
|
|
|
312 |
while output_frame_count < total_frames and last_annotated_frame is not None:
|
313 |
out.write(last_annotated_frame)
|
314 |
output_frame_count += 1
|
@@ -339,16 +344,23 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
339 |
|
340 |
total_time = time.time() - start_time
|
341 |
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
|
|
|
|
|
|
342 |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
343 |
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
344 |
-
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
345 |
-
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
346 |
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
347 |
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
348 |
|
349 |
chart_path = generate_line_chart()
|
350 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
351 |
|
|
|
|
|
|
|
|
|
352 |
return (
|
353 |
output_path,
|
354 |
json.dumps(last_metrics, indent=2),
|
@@ -356,7 +368,10 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
356 |
detected_issues,
|
357 |
chart_path,
|
358 |
map_path,
|
359 |
-
|
|
|
|
|
|
|
360 |
)
|
361 |
|
362 |
# Gradio interface
|
@@ -379,13 +394,30 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
|
379 |
map_output = gr.Image(label="Issue Locations Map")
|
380 |
with gr.Row():
|
381 |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
|
384 |
process_btn.click(
|
385 |
-
process_video,
|
386 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
387 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
)
|
389 |
|
390 |
if __name__ == "__main__":
|
391 |
-
iface.launch()
|
|
|
14 |
import ultralytics
|
15 |
import time
|
16 |
import piexif
|
17 |
+
import zipfile
|
18 |
|
19 |
# Set YOLO config directory
|
20 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
|
|
44 |
gps_coordinates: List[List[float]] = []
|
45 |
last_metrics: Dict[str, Any] = {}
|
46 |
frame_count: int = 0
|
47 |
+
SAVE_IMAGE_INTERVAL = 1
|
48 |
|
49 |
+
# Detection classes
|
50 |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
51 |
|
52 |
# Debug: Check environment
|
|
|
60 |
print(f"Using device: {device}")
|
61 |
model = YOLO('./data/best.pt').to(device)
|
62 |
if device == "cuda":
|
63 |
+
model.half()
|
64 |
print(f"Model classes: {model.names}")
|
65 |
|
66 |
+
def zip_directory(folder_path: str, zip_path: str) -> str:
|
67 |
+
"""Zip all files in a directory."""
|
68 |
+
try:
|
69 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
70 |
+
for root, _, files in os.walk(folder_path):
|
71 |
+
for file in files:
|
72 |
+
file_path = os.path.join(root, file)
|
73 |
+
arcname = os.path.relpath(file_path, folder_path)
|
74 |
+
zipf.write(file_path, arcname)
|
75 |
+
return zip_path
|
76 |
+
except Exception as e:
|
77 |
+
logging.error(f"Failed to zip {folder_path}: {str(e)}")
|
78 |
+
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
|
79 |
+
return ""
|
80 |
+
|
81 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
82 |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
83 |
plt.figure(figsize=(4, 4))
|
|
|
126 |
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
|
127 |
height, width, _ = frame.shape
|
128 |
frame_resolution = width * height
|
129 |
+
if frame_resolution < 12_000_000:
|
130 |
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} ({frame_resolution/1e6:.2f}MP) below 12MP, non-compliant")
|
131 |
+
if frame_resolution < input_resolution:
|
132 |
log_entries.append(f"Frame {frame_count}: Output resolution {width}x{height} below input resolution")
|
133 |
return False
|
134 |
return True
|
|
|
156 |
plt.close()
|
157 |
return chart_path
|
158 |
|
|
|
|
|
|
|
|
|
159 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
160 |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
161 |
frame_count = 0
|
|
|
168 |
if video is None:
|
169 |
log_entries.append("Error: No video uploaded")
|
170 |
logging.error("No video uploaded")
|
171 |
+
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
172 |
|
173 |
start_time = time.time()
|
174 |
cap = cv2.VideoCapture(video)
|
175 |
if not cap.isOpened():
|
176 |
log_entries.append("Error: Could not open video file")
|
177 |
logging.error("Could not open video file")
|
178 |
+
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
179 |
|
180 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
181 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
183 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
184 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
185 |
expected_duration = total_frames / fps if fps > 0 else 0
|
186 |
+
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
187 |
+
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
188 |
+
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
189 |
|
190 |
out_width, out_height = resize_width, resize_height
|
191 |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
|
192 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height))
|
193 |
+
if not out.isOpened():
|
194 |
+
log_entries.append("Error: Failed to initialize mp4v codec")
|
195 |
+
logging.error("Failed to initialize mp4v codec")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
cap.release()
|
197 |
+
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
198 |
|
199 |
processed_frames = 0
|
200 |
all_detections = []
|
201 |
frame_times = []
|
202 |
+
inference_times = []
|
203 |
+
resize_times = []
|
204 |
+
io_times = []
|
205 |
detection_frame_count = 0
|
206 |
output_frame_count = 0
|
207 |
last_annotated_frame = None
|
|
|
222 |
processed_frames += 1
|
223 |
frame_start = time.time()
|
224 |
|
225 |
+
# Resize
|
226 |
+
resize_start = time.time()
|
227 |
frame = cv2.resize(frame, (out_width, out_height))
|
228 |
+
resize_times.append((time.time() - resize_start) * 1000)
|
229 |
+
|
230 |
if not check_image_quality(frame, input_resolution):
|
231 |
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution")
|
232 |
continue
|
233 |
|
234 |
+
# Inference
|
235 |
+
inference_start = time.time()
|
236 |
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
237 |
annotated_frame = results[0].plot()
|
238 |
+
inference_times.append((time.time() - inference_start) * 1000)
|
239 |
|
240 |
frame_timestamp = frame_count / fps if fps > 0 else 0
|
241 |
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
|
|
|
243 |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
244 |
gps_coordinates.append(gps_coord)
|
245 |
|
246 |
+
io_start = time.time()
|
247 |
frame_detections = []
|
248 |
for detection in results[0].boxes:
|
249 |
cls = int(detection.cls)
|
|
|
290 |
"frame": frame_count
|
291 |
})
|
292 |
|
293 |
+
io_times.append((time.time() - io_start) * 1000)
|
294 |
+
|
295 |
out.write(annotated_frame)
|
296 |
output_frame_count += 1
|
297 |
last_annotated_frame = annotated_frame
|
|
|
305 |
|
306 |
frame_time = (time.time() - frame_start) * 1000
|
307 |
frame_times.append(frame_time)
|
308 |
+
log_entries.append(f"Frame {frame_count}: Processed in {frame_time:.2f} ms (Resize: {resize_times[-1]:.2f} ms, Inference: {inference_times[-1]:.2f} ms, I/O: {io_times[-1]:.2f} ms)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
if len(log_entries) > 50:
|
310 |
log_entries.pop(0)
|
311 |
|
312 |
+
if time.time() - start_time > 600:
|
313 |
+
log_entries.append("Error: Processing timeout after 600 seconds")
|
314 |
+
logging.error("Processing timeout after 600 seconds")
|
315 |
+
break
|
316 |
+
|
317 |
while output_frame_count < total_frames and last_annotated_frame is not None:
|
318 |
out.write(last_annotated_frame)
|
319 |
output_frame_count += 1
|
|
|
344 |
|
345 |
total_time = time.time() - start_time
|
346 |
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
347 |
+
avg_resize_time = sum(resize_times) / len(resize_times) if resize_times else 0
|
348 |
+
avg_inference_time = sum(inference_times) / len(inference_times) if inference_times else 0
|
349 |
+
avg_io_time = sum(io_times) / len(io_times) if io_times else 0
|
350 |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
351 |
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
352 |
+
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
353 |
+
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
354 |
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
355 |
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
356 |
|
357 |
chart_path = generate_line_chart()
|
358 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
359 |
|
360 |
+
# Zip images and logs
|
361 |
+
images_zip = zip_directory(CAPTURED_FRAMES_DIR, os.path.join(OUTPUT_DIR, "captured_frames.zip"))
|
362 |
+
logs_zip = zip_directory(FLIGHT_LOG_DIR, os.path.join(OUTPUT_DIR, "flight_logs.zip"))
|
363 |
+
|
364 |
return (
|
365 |
output_path,
|
366 |
json.dumps(last_metrics, indent=2),
|
|
|
368 |
detected_issues,
|
369 |
chart_path,
|
370 |
map_path,
|
371 |
+
submission_json_path,
|
372 |
+
images_zip,
|
373 |
+
logs_zip,
|
374 |
+
output_path # For video download
|
375 |
)
|
376 |
|
377 |
# Gradio interface
|
|
|
394 |
map_output = gr.Image(label="Issue Locations Map")
|
395 |
with gr.Row():
|
396 |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
397 |
+
with gr.Row():
|
398 |
+
gr.Markdown("## Download Results")
|
399 |
+
with gr.Row():
|
400 |
+
json_download = gr.File(label="Download Data Lake JSON")
|
401 |
+
images_zip_download = gr.File(label="Download Geotagged Images (ZIP)")
|
402 |
+
logs_zip_download = gr.File(label="Download Flight Logs (ZIP)")
|
403 |
+
video_download = gr.File(label="Download Processed Video")
|
404 |
|
405 |
process_btn.click(
|
406 |
+
fn=process_video,
|
407 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
408 |
+
outputs=[
|
409 |
+
video_output,
|
410 |
+
metrics_output,
|
411 |
+
logs_output,
|
412 |
+
issue_gallery,
|
413 |
+
chart_output,
|
414 |
+
map_output,
|
415 |
+
json_download,
|
416 |
+
images_zip_download,
|
417 |
+
logs_zip_download,
|
418 |
+
video_download
|
419 |
+
]
|
420 |
)
|
421 |
|
422 |
if __name__ == "__main__":
|
423 |
+
iface.launch()
|