Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,130 +1,84 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
-
import
|
| 4 |
import random
|
| 5 |
-
import time
|
| 6 |
-
|
| 7 |
from services.video_service import get_random_video_frame
|
| 8 |
from services.overlay_service import overlay_boxes
|
| 9 |
from services.detection_service import detect_objects
|
| 10 |
from services.thermal_service import detect_thermal_anomalies
|
| 11 |
|
|
|
|
| 12 |
TEMP_IMAGE_PATH = "temp.jpg"
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
if frame is None:
|
| 18 |
-
|
| 19 |
-
return None, "No frame available", 0, 0
|
| 20 |
|
| 21 |
-
# Save current frame
|
| 22 |
cv2.imwrite(TEMP_IMAGE_PATH, frame)
|
| 23 |
|
| 24 |
-
# Object detection
|
| 25 |
detections = detect_objects(TEMP_IMAGE_PATH)
|
| 26 |
-
|
| 27 |
-
# Thermal detection
|
| 28 |
thermal_detections = detect_thermal_anomalies(TEMP_IMAGE_PATH)
|
| 29 |
|
| 30 |
# Merge all detections
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# Overlay
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def build_interface():
|
| 46 |
-
with gr.Blocks() as
|
| 47 |
with gr.Row():
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
anomaly_info = gr.Textbox(label="Anomaly Summary", interactive=False)
|
| 51 |
-
anomaly_count = gr.Number(label="Anomaly Count", interactive=False)
|
| 52 |
-
total_objects = gr.Number(label="Total Detections", interactive=False)
|
| 53 |
-
|
| 54 |
-
def loop_monitor():
|
| 55 |
-
while True:
|
| 56 |
-
time.sleep(1) # every 1 second
|
| 57 |
-
yield monitor_feed()
|
| 58 |
-
|
| 59 |
-
demo.load(loop_monitor, outputs=[image_display, anomaly_info, anomaly_count, total_objects])
|
| 60 |
-
|
| 61 |
-
return demo
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo = build_interface()
|
| 65 |
-
demo.queue()
|
| 66 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
| 67 |
-
import gradio as gr
|
| 68 |
-
import cv2
|
| 69 |
-
import os
|
| 70 |
-
import random
|
| 71 |
-
import time
|
| 72 |
-
|
| 73 |
-
from services.video_service import get_random_video_frame
|
| 74 |
-
from services.overlay_service import overlay_boxes
|
| 75 |
-
from services.detection_service import detect_objects
|
| 76 |
-
from services.thermal_service import detect_thermal_anomalies
|
| 77 |
-
|
| 78 |
-
TEMP_IMAGE_PATH = "temp.jpg"
|
| 79 |
-
|
| 80 |
-
def monitor_feed():
|
| 81 |
-
frame = get_random_video_frame()
|
| 82 |
-
if frame is None:
|
| 83 |
-
return None, "No frame available", 0, 0
|
| 84 |
-
|
| 85 |
-
# Save current frame
|
| 86 |
-
cv2.imwrite(TEMP_IMAGE_PATH, frame)
|
| 87 |
-
|
| 88 |
-
# Object detection
|
| 89 |
-
detections = detect_objects(TEMP_IMAGE_PATH)
|
| 90 |
-
|
| 91 |
-
# Thermal detection
|
| 92 |
-
thermal_detections = detect_thermal_anomalies(TEMP_IMAGE_PATH)
|
| 93 |
-
|
| 94 |
-
# Merge all detections
|
| 95 |
-
all_detections = detections + thermal_detections
|
| 96 |
-
|
| 97 |
-
# Overlay bounding boxes
|
| 98 |
-
result_image = overlay_boxes(TEMP_IMAGE_PATH, all_detections)
|
| 99 |
-
|
| 100 |
-
if result_image is not None:
|
| 101 |
-
cv2.imwrite(TEMP_IMAGE_PATH, result_image)
|
| 102 |
-
|
| 103 |
-
# For metric panel
|
| 104 |
-
anomaly_count = len([d for d in all_detections if d[4] != "normal"])
|
| 105 |
-
total_count = len(all_detections)
|
| 106 |
-
|
| 107 |
-
return TEMP_IMAGE_PATH, f"Detected {anomaly_count} anomalies", anomaly_count, total_count
|
| 108 |
-
|
| 109 |
-
def build_interface():
|
| 110 |
-
with gr.Blocks() as demo:
|
| 111 |
with gr.Row():
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
time.sleep(1) # every 1 second
|
| 121 |
-
yield monitor_feed()
|
| 122 |
|
| 123 |
-
|
|
|
|
| 124 |
|
| 125 |
-
return
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
import random
|
|
|
|
|
|
|
| 5 |
from services.video_service import get_random_video_frame
|
| 6 |
from services.overlay_service import overlay_boxes
|
| 7 |
from services.detection_service import detect_objects
|
| 8 |
from services.thermal_service import detect_thermal_anomalies
|
| 9 |
|
| 10 |
+
# Constants
|
| 11 |
TEMP_IMAGE_PATH = "temp.jpg"
|
| 12 |
|
| 13 |
+
# Global Variables
|
| 14 |
+
paused = False
|
| 15 |
+
frame_rate = 1 # default frame rate in seconds
|
| 16 |
|
| 17 |
+
# Helper functions
|
| 18 |
+
def monitor_feed():
|
| 19 |
+
frame, anomaly_type = get_random_video_frame()
|
| 20 |
if frame is None:
|
| 21 |
+
return None, "Error loading video frame"
|
|
|
|
| 22 |
|
|
|
|
| 23 |
cv2.imwrite(TEMP_IMAGE_PATH, frame)
|
| 24 |
|
|
|
|
| 25 |
detections = detect_objects(TEMP_IMAGE_PATH)
|
|
|
|
|
|
|
| 26 |
thermal_detections = detect_thermal_anomalies(TEMP_IMAGE_PATH)
|
| 27 |
|
| 28 |
# Merge all detections
|
| 29 |
+
combined_detections = detections + thermal_detections
|
| 30 |
+
|
| 31 |
+
# Overlay the detections
|
| 32 |
+
annotated_frame = overlay_boxes(frame.copy(), combined_detections)
|
| 33 |
+
|
| 34 |
+
# Update status text
|
| 35 |
+
status_text = f"Active Anomaly: {anomaly_type} | Objects Detected: {len(detections)} | Thermal Alerts: {len(thermal_detections)}"
|
| 36 |
+
|
| 37 |
+
return annotated_frame, status_text
|
| 38 |
+
|
| 39 |
+
def loop_monitor():
|
| 40 |
+
global paused
|
| 41 |
+
while True:
|
| 42 |
+
if not paused:
|
| 43 |
+
yield monitor_feed()
|
| 44 |
+
else:
|
| 45 |
+
yield None, "Paused"
|
| 46 |
+
import time
|
| 47 |
+
time.sleep(frame_rate)
|
| 48 |
+
|
| 49 |
+
# Pause/Resume control
|
| 50 |
+
def toggle_pause():
|
| 51 |
+
global paused
|
| 52 |
+
paused = not paused
|
| 53 |
+
return "Resume" if paused else "Pause"
|
| 54 |
+
|
| 55 |
+
# Frame Rate control
|
| 56 |
+
def update_frame_rate(new_rate):
|
| 57 |
+
global frame_rate
|
| 58 |
+
frame_rate = new_rate
|
| 59 |
+
return f"Frame Rate set to {new_rate} sec"
|
| 60 |
+
|
| 61 |
+
# Build Gradio Interface
|
| 62 |
def build_interface():
|
| 63 |
+
with gr.Blocks() as app:
|
| 64 |
with gr.Row():
|
| 65 |
+
video_output = gr.Image(label="Surveillance Feed", interactive=False)
|
| 66 |
+
metrics_output = gr.Textbox(label="Live Metrics", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
with gr.Row():
|
| 68 |
+
pause_button = gr.Button("Pause")
|
| 69 |
+
frame_rate_slider = gr.Slider(minimum=0.5, maximum=5, value=1, step=0.5, label="Frame Update Interval (seconds)")
|
| 70 |
+
|
| 71 |
+
# Live update feed
|
| 72 |
+
app.load(loop_monitor, outputs=[video_output, metrics_output], every=frame_rate)
|
| 73 |
|
| 74 |
+
# Pause/Resume button logic
|
| 75 |
+
pause_button.click(toggle_pause, outputs=pause_button)
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Frame Rate Slider logic
|
| 78 |
+
frame_rate_slider.change(update_frame_rate, inputs=frame_rate_slider, outputs=None)
|
| 79 |
|
| 80 |
+
return app
|
| 81 |
|
| 82 |
+
# Launch the app
|
| 83 |
+
demo = build_interface()
|
| 84 |
+
demo.launch()
|
|
|