Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,65 +1,134 @@
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
import time
|
| 3 |
import os
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from services.thermal_service import detect_thermal_anomalies
|
| 6 |
from services.overlay_service import overlay_boxes
|
| 7 |
from services.metrics_service import update_metrics
|
| 8 |
|
| 9 |
-
|
| 10 |
paused = False
|
| 11 |
-
frame_rate = 1
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
|
|
|
| 17 |
def monitor_feed():
|
| 18 |
global paused
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
if paused:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
frame = get_random_video_frame()
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
|
|
|
|
|
|
| 29 |
|
|
|
|
| 30 |
detected_boxes = detect_thermal_anomalies(frame)
|
| 31 |
frame = overlay_boxes(frame, detected_boxes)
|
| 32 |
-
|
| 33 |
metrics = update_metrics(detected_boxes)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
with gr.Row():
|
| 46 |
with gr.Column(scale=3):
|
| 47 |
-
video_output = gr.Image(label="Live Video Feed", elem_id="video-feed")
|
| 48 |
with gr.Column(scale=1):
|
| 49 |
-
metrics_output = gr.Label(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
with gr.Row():
|
| 52 |
-
pause_btn = gr.Button("
|
| 53 |
-
resume_btn = gr.Button("
|
| 54 |
-
frame_slider = gr.Slider(0.
|
| 55 |
|
| 56 |
def toggle_pause():
|
| 57 |
global paused
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def streaming_loop():
|
| 60 |
while True:
|
| 61 |
-
frame, metrics = monitor_feed()
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
time.sleep(frame_rate)
|
| 64 |
|
| 65 |
-
app.load(streaming_loop, outputs=[video_output, metrics_output])
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import time
|
| 4 |
import os
|
| 5 |
+
import random
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from services.video_service import get_next_video_frame
|
| 10 |
from services.thermal_service import detect_thermal_anomalies
|
| 11 |
from services.overlay_service import overlay_boxes
|
| 12 |
from services.metrics_service import update_metrics
|
| 13 |
|
| 14 |
+
# Globals
|
| 15 |
paused = False
|
| 16 |
+
frame_rate = 1
|
| 17 |
+
frame_count = 0
|
| 18 |
+
log_entries = []
|
| 19 |
+
anomaly_counts = []
|
| 20 |
|
| 21 |
+
# Constants
|
| 22 |
+
TEMP_IMAGE_PATH = "temp.jpg"
|
| 23 |
|
| 24 |
+
# Core monitor function
|
| 25 |
def monitor_feed():
|
| 26 |
global paused
|
| 27 |
+
global frame_count
|
| 28 |
|
| 29 |
+
frame = None
|
| 30 |
|
| 31 |
if paused:
|
| 32 |
+
if os.path.exists(TEMP_IMAGE_PATH):
|
| 33 |
+
frame = cv2.imread(TEMP_IMAGE_PATH)
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
if frame is None:
|
| 36 |
+
frame = get_next_video_frame()
|
| 37 |
|
| 38 |
+
if not paused:
|
| 39 |
detected_boxes = detect_thermal_anomalies(frame)
|
| 40 |
frame = overlay_boxes(frame, detected_boxes)
|
| 41 |
+
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
|
| 42 |
metrics = update_metrics(detected_boxes)
|
| 43 |
+
else:
|
| 44 |
+
metrics = update_metrics([])
|
| 45 |
+
|
| 46 |
+
frame = cv2.resize(frame, (640, 480)) # Fixed window size
|
| 47 |
+
|
| 48 |
+
# Add frame count and timestamp
|
| 49 |
+
frame_count += 1
|
| 50 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 51 |
+
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
| 52 |
+
cv2.putText(frame, f"{timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
| 53 |
+
|
| 54 |
+
# Update logs and anomaly counts
|
| 55 |
+
anomaly_detected = len(metrics['anomalies']) if 'anomalies' in metrics else 0
|
| 56 |
+
log_entries.append(f"{timestamp} - Frame {frame_count} - Anomalies Detected: {anomaly_detected}")
|
| 57 |
+
anomaly_counts.append(anomaly_detected)
|
| 58 |
+
|
| 59 |
+
if len(log_entries) > 100:
|
| 60 |
+
log_entries.pop(0)
|
| 61 |
+
if len(anomaly_counts) > 100:
|
| 62 |
+
anomaly_counts.pop(0)
|
| 63 |
+
|
| 64 |
+
return frame[:, :, ::-1], metrics, "\n".join(log_entries[-10:]), generate_chart()
|
| 65 |
+
|
| 66 |
+
# Chart generator
|
| 67 |
+
def generate_chart():
|
| 68 |
+
fig, ax = plt.subplots(figsize=(4, 2))
|
| 69 |
+
ax.plot(anomaly_counts[-50:], marker='o')
|
| 70 |
+
ax.set_title("Anomalies Over Time")
|
| 71 |
+
ax.set_xlabel("Frame")
|
| 72 |
+
ax.set_ylabel("Count")
|
| 73 |
+
fig.tight_layout()
|
| 74 |
+
chart_path = "chart_temp.png"
|
| 75 |
+
fig.savefig(chart_path)
|
| 76 |
+
plt.close(fig)
|
| 77 |
+
return chart_path
|
| 78 |
+
|
| 79 |
+
# Gradio UI
|
| 80 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
| 81 |
+
gr.Markdown("# \ud83c\udf10 Thermal Anomaly Monitoring Dashboard", elem_id="main-title")
|
| 82 |
+
|
| 83 |
+
status_text = gr.Markdown("**Status:** \ud83d\udfe2 Running", elem_id="status-banner")
|
| 84 |
|
| 85 |
with gr.Row():
|
| 86 |
with gr.Column(scale=3):
|
| 87 |
+
video_output = gr.Image(label="Live Video Feed", elem_id="video-feed", width=640, height=480)
|
| 88 |
with gr.Column(scale=1):
|
| 89 |
+
metrics_output = gr.Label(label="Live Metrics", elem_id="metrics")
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
with gr.Column():
|
| 93 |
+
logs_output = gr.Textbox(label="Live Logs", lines=10)
|
| 94 |
+
with gr.Column():
|
| 95 |
+
chart_output = gr.Image(label="Detection Trends")
|
| 96 |
|
| 97 |
with gr.Row():
|
| 98 |
+
pause_btn = gr.Button("\u23f8\ufe0f Pause")
|
| 99 |
+
resume_btn = gr.Button("\u25b6\ufe0f Resume")
|
| 100 |
+
frame_slider = gr.Slider(0.2, 5, value=1, label="Frame Interval (seconds)")
|
| 101 |
|
| 102 |
def toggle_pause():
|
| 103 |
global paused
|
| 104 |
+
paused = True
|
| 105 |
+
return "**Status:** \u23f8\ufe0f Paused"
|
| 106 |
+
|
| 107 |
+
def toggle_resume():
|
| 108 |
+
global paused
|
| 109 |
+
paused = False
|
| 110 |
+
return "**Status:** \ud83d\udfe2 Running"
|
| 111 |
+
|
| 112 |
+
def set_frame_rate(val):
|
| 113 |
+
global frame_rate
|
| 114 |
+
frame_rate = val
|
| 115 |
+
|
| 116 |
+
pause_btn.click(toggle_pause, outputs=status_text)
|
| 117 |
+
resume_btn.click(toggle_resume, outputs=status_text)
|
| 118 |
+
frame_slider.change(set_frame_rate, inputs=[frame_slider])
|
| 119 |
|
| 120 |
def streaming_loop():
|
| 121 |
while True:
|
| 122 |
+
frame, metrics, logs, chart = monitor_feed()
|
| 123 |
+
# Check for alerts
|
| 124 |
+
if anomaly_counts and anomaly_counts[-1] >= 5:
|
| 125 |
+
status = "**Status:** \ud83d\udd34 Alert: High Anomaly Rate"
|
| 126 |
+
else:
|
| 127 |
+
status = "**Status:** \ud83d\udfe2 Running" if not paused else "**Status:** \u23f8\ufe0f Paused"
|
| 128 |
+
yield [frame, metrics, logs, chart, status]
|
| 129 |
time.sleep(frame_rate)
|
| 130 |
|
| 131 |
+
app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output, status_text])
|
| 132 |
+
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
app.launch()
|