Spaces:
Runtime error
Runtime error
Update services/plantation/plant_count.py
Browse files
services/plantation/plant_count.py
CHANGED
@@ -1,85 +1,67 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
from ultralytics import YOLO
|
4 |
-
import os
|
5 |
import logging
|
6 |
-
from typing import
|
7 |
|
8 |
-
#
|
9 |
logging.basicConfig(
|
10 |
filename="app.log",
|
11 |
level=logging.INFO,
|
12 |
format="%(asctime)s - %(levelname)s - %(message)s"
|
13 |
)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
model = None
|
27 |
-
|
28 |
-
def process_plants(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
29 |
-
# Validate input frame
|
30 |
-
if not isinstance(frame, np.ndarray) or frame.size == 0:
|
31 |
-
logging.error("Invalid input frame provided to plant_count.")
|
32 |
-
return [], frame
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
except Exception as e:
|
44 |
-
logging.error(f"Error during YOLO inference: {str(e)}")
|
45 |
-
return [], frame
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
for
|
52 |
-
|
53 |
-
|
|
|
54 |
continue
|
55 |
-
cls = int(box.cls[0])
|
56 |
-
label = model.names[cls]
|
57 |
-
if label != "plant":
|
58 |
-
continue
|
59 |
-
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
60 |
-
x_min, y_min, x_max, y_max = xyxy
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
detections.append({
|
64 |
-
"type":
|
65 |
-
"label":
|
66 |
-
"
|
67 |
-
"
|
68 |
})
|
69 |
|
70 |
-
|
71 |
-
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max),
|
72 |
-
cv2.putText(
|
73 |
-
|
74 |
-
detection_label,
|
75 |
-
(x_min, y_min - 10),
|
76 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
77 |
-
0.6,
|
78 |
-
color,
|
79 |
-
2
|
80 |
-
)
|
81 |
-
|
82 |
-
line_counter += 1
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
|
|
|
|
3 |
import logging
|
4 |
+
from typing import List, Dict, Tuple
|
5 |
|
6 |
+
# Setup logging
|
7 |
logging.basicConfig(
|
8 |
filename="app.log",
|
9 |
level=logging.INFO,
|
10 |
format="%(asctime)s - %(levelname)s - %(message)s"
|
11 |
)
|
12 |
|
13 |
+
def process_plants(frame: np.ndarray) -> Tuple[List[Dict], np.ndarray]:
|
14 |
+
"""
|
15 |
+
Process a frame to count plants/trees using color-based segmentation.
|
16 |
+
Args:
|
17 |
+
frame: Input frame (BGR numpy array)
|
18 |
+
Returns:
|
19 |
+
Tuple: (List of detection dictionaries, annotated frame)
|
20 |
+
"""
|
21 |
+
try:
|
22 |
+
# Convert frame to HSV for better color segmentation
|
23 |
+
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Define range for green color (trees/plants)
|
26 |
+
lower_green = np.array([35, 40, 40])
|
27 |
+
upper_green = np.array([85, 255, 255])
|
28 |
+
mask = cv2.inRange(hsv, lower_green, upper_green)
|
29 |
|
30 |
+
# Morphological operations to reduce noise
|
31 |
+
kernel = np.ones((5, 5), np.uint8)
|
32 |
+
mask = cv2.erode(mask, kernel, iterations=1)
|
33 |
+
mask = cv2.dilate(mask, kernel, iterations=1)
|
|
|
|
|
|
|
34 |
|
35 |
+
# Find contours of green regions (trees)
|
36 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
37 |
|
38 |
+
detections = []
|
39 |
+
for idx, contour in enumerate(contours):
|
40 |
+
# Filter small contours (noise)
|
41 |
+
area = cv2.contourArea(contour)
|
42 |
+
if area < 300: # Minimum area threshold
|
43 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Get bounding box
|
46 |
+
x, y, w, h = cv2.boundingRect(contour)
|
47 |
+
x_min, y_min, x_max, y_max = x, y, x + w, y + h
|
48 |
+
|
49 |
+
# Add detection
|
50 |
detections.append({
|
51 |
+
"type": "plant",
|
52 |
+
"label": f"Plant {idx + 1}",
|
53 |
+
"box": [x_min, y_min, x_max, y_max],
|
54 |
+
"confidence": 0.9 # Simulated confidence
|
55 |
})
|
56 |
|
57 |
+
# Draw bounding box and label on frame
|
58 |
+
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
59 |
+
cv2.putText(frame, f"Plant {idx + 1}", (x_min, y_min - 10),
|
60 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
logging.info(f"Detected {len(detections)} plants in frame.")
|
63 |
+
return detections, frame
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
logging.error(f"Error in plant counting: {str(e)}")
|
67 |
+
return [], frame
|