Spaces:
Runtime error
Runtime error
Update services/crack_detection_service.py
Browse files- services/crack_detection_service.py +113 -14
services/crack_detection_service.py
CHANGED
@@ -9,21 +9,22 @@ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
9 |
MODEL_PATH = os.path.join(BASE_DIR, "../models/yolov8m-seg.pt")
|
10 |
model = YOLO(MODEL_PATH)
|
11 |
|
12 |
-
|
|
|
|
|
13 |
"""
|
14 |
-
Detect cracks
|
15 |
Args:
|
16 |
frame: Input frame (numpy array)
|
|
|
17 |
Returns:
|
18 |
-
list: List of detected
|
19 |
"""
|
20 |
-
# Run YOLOv8 inference
|
21 |
results = model(frame)
|
22 |
-
|
23 |
detected_items = []
|
24 |
line_counter = 1 # Initialize counter for numbered labels
|
25 |
|
26 |
-
# Process detections
|
27 |
for r in results:
|
28 |
for box in r.boxes:
|
29 |
conf = float(box.conf[0])
|
@@ -31,29 +32,127 @@ def detect_cracks_and_objects(frame):
|
|
31 |
continue
|
32 |
cls = int(box.cls[0])
|
33 |
label = model.names[cls]
|
34 |
-
if label
|
35 |
continue
|
36 |
xyxy = box.xyxy[0].cpu().numpy()
|
37 |
x_min, y_min, x_max, y_max = map(int, xyxy)
|
38 |
|
39 |
# Simulate severity for cracks
|
40 |
-
severity =
|
41 |
-
if label == "crack":
|
42 |
-
severity = random.choice(["low", "medium", "high"])
|
43 |
|
44 |
# Add numbered label
|
45 |
-
detection_label = f"Line {line_counter} -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
item = {
|
47 |
"type": label,
|
48 |
"label": detection_label,
|
49 |
"confidence": conf,
|
50 |
"coordinates": [x_min, y_min, x_max, y_max]
|
51 |
}
|
52 |
-
if severity:
|
53 |
-
item["severity"] = severity
|
54 |
|
55 |
detected_items.append(item)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
57 |
line_counter += 1
|
58 |
|
59 |
-
return detected_items
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
MODEL_PATH = os.path.join(BASE_DIR, "../models/yolov8m-seg.pt")
|
10 |
model = YOLO(MODEL_PATH)
|
11 |
|
12 |
+
import random
|
13 |
+
|
14 |
+
def detect_cracks(frame, model):
|
15 |
"""
|
16 |
+
Detect cracks in a frame using YOLOv8.
|
17 |
Args:
|
18 |
frame: Input frame (numpy array)
|
19 |
+
model: YOLO model
|
20 |
Returns:
|
21 |
+
list: List of detected cracks with type, label, coordinates, confidence, and severity
|
22 |
"""
|
23 |
+
# Run YOLOv8 inference for cracks
|
24 |
results = model(frame)
|
|
|
25 |
detected_items = []
|
26 |
line_counter = 1 # Initialize counter for numbered labels
|
27 |
|
|
|
28 |
for r in results:
|
29 |
for box in r.boxes:
|
30 |
conf = float(box.conf[0])
|
|
|
32 |
continue
|
33 |
cls = int(box.cls[0])
|
34 |
label = model.names[cls]
|
35 |
+
if label != "crack": # Process only cracks
|
36 |
continue
|
37 |
xyxy = box.xyxy[0].cpu().numpy()
|
38 |
x_min, y_min, x_max, y_max = map(int, xyxy)
|
39 |
|
40 |
# Simulate severity for cracks
|
41 |
+
severity = random.choice(["low", "medium", "high"])
|
|
|
|
|
42 |
|
43 |
# Add numbered label
|
44 |
+
detection_label = f"Line {line_counter} - Crack (Conf: {conf:.2f})"
|
45 |
+
item = {
|
46 |
+
"type": label,
|
47 |
+
"label": detection_label,
|
48 |
+
"confidence": conf,
|
49 |
+
"coordinates": [x_min, y_min, x_max, y_max],
|
50 |
+
"severity": severity
|
51 |
+
}
|
52 |
+
|
53 |
+
detected_items.append(item)
|
54 |
+
line_counter += 1
|
55 |
+
|
56 |
+
return detected_items
|
57 |
+
|
58 |
+
def detect_potholes(frame, model):
|
59 |
+
"""
|
60 |
+
Detect potholes in a frame using YOLOv8.
|
61 |
+
Args:
|
62 |
+
frame: Input frame (numpy array)
|
63 |
+
model: YOLO model
|
64 |
+
Returns:
|
65 |
+
list: List of detected potholes with type, label, coordinates, and confidence
|
66 |
+
"""
|
67 |
+
# Run YOLOv8 inference for potholes
|
68 |
+
results = model(frame)
|
69 |
+
detected_items = []
|
70 |
+
line_counter = 1 # Initialize counter for numbered labels
|
71 |
+
|
72 |
+
for r in results:
|
73 |
+
for box in r.boxes:
|
74 |
+
conf = float(box.conf[0])
|
75 |
+
if conf < 0.5:
|
76 |
+
continue
|
77 |
+
cls = int(box.cls[0])
|
78 |
+
label = model.names[cls]
|
79 |
+
if label != "pothole": # Process only potholes
|
80 |
+
continue
|
81 |
+
xyxy = box.xyxy[0].cpu().numpy()
|
82 |
+
x_min, y_min, x_max, y_max = map(int, xyxy)
|
83 |
+
|
84 |
+
# Add numbered label
|
85 |
+
detection_label = f"Line {line_counter} - Pothole (Conf: {conf:.2f})"
|
86 |
item = {
|
87 |
"type": label,
|
88 |
"label": detection_label,
|
89 |
"confidence": conf,
|
90 |
"coordinates": [x_min, y_min, x_max, y_max]
|
91 |
}
|
|
|
|
|
92 |
|
93 |
detected_items.append(item)
|
94 |
+
line_counter += 1
|
95 |
+
|
96 |
+
return detected_items
|
97 |
+
|
98 |
+
def detect_objects(frame, model):
|
99 |
+
"""
|
100 |
+
Detect objects in a frame using YOLOv8.
|
101 |
+
Args:
|
102 |
+
frame: Input frame (numpy array)
|
103 |
+
model: YOLO model
|
104 |
+
Returns:
|
105 |
+
list: List of detected objects with type, label, coordinates, and confidence
|
106 |
+
"""
|
107 |
+
# Run YOLOv8 inference for other objects
|
108 |
+
results = model(frame)
|
109 |
+
detected_items = []
|
110 |
+
line_counter = 1 # Initialize counter for numbered labels
|
111 |
+
|
112 |
+
for r in results:
|
113 |
+
for box in r.boxes:
|
114 |
+
conf = float(box.conf[0])
|
115 |
+
if conf < 0.5:
|
116 |
+
continue
|
117 |
+
cls = int(box.cls[0])
|
118 |
+
label = model.names[cls]
|
119 |
+
if label != "object": # Process only objects
|
120 |
+
continue
|
121 |
+
xyxy = box.xyxy[0].cpu().numpy()
|
122 |
+
x_min, y_min, x_max, y_max = map(int, xyxy)
|
123 |
+
|
124 |
+
# Add numbered label
|
125 |
+
detection_label = f"Line {line_counter} - Object (Conf: {conf:.2f})"
|
126 |
+
item = {
|
127 |
+
"type": label,
|
128 |
+
"label": detection_label,
|
129 |
+
"confidence": conf,
|
130 |
+
"coordinates": [x_min, y_min, x_max, y_max]
|
131 |
+
}
|
132 |
|
133 |
+
detected_items.append(item)
|
134 |
line_counter += 1
|
135 |
|
136 |
+
return detected_items
|
137 |
+
|
138 |
+
def detect_items_in_sequence(frame, model):
|
139 |
+
"""
|
140 |
+
Run crack, pothole, and object detection sequentially.
|
141 |
+
Args:
|
142 |
+
frame: Input frame (numpy array)
|
143 |
+
model: YOLO model
|
144 |
+
Returns:
|
145 |
+
list: List of detected items (crack, pothole, object)
|
146 |
+
"""
|
147 |
+
detected_items = []
|
148 |
+
|
149 |
+
# Detect cracks first
|
150 |
+
detected_items.extend(detect_cracks(frame, model))
|
151 |
+
|
152 |
+
# Detect potholes second
|
153 |
+
detected_items.extend(detect_potholes(frame, model))
|
154 |
+
|
155 |
+
# Detect objects third
|
156 |
+
detected_items.extend(detect_objects(frame, model))
|
157 |
+
|
158 |
+
return detected_items
|