Spaces:
Runtime error
Runtime error
Update services/operations_maintenance/signage_check.py
Browse files
services/operations_maintenance/signage_check.py
CHANGED
|
@@ -1,85 +1,37 @@
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
-
from
|
| 4 |
-
import os
|
| 5 |
-
import logging
|
| 6 |
-
from typing import Tuple, List, Dict, Any
|
| 7 |
-
|
| 8 |
-
# Configure logging
|
| 9 |
-
logging.basicConfig(
|
| 10 |
-
filename="app.log",
|
| 11 |
-
level=logging.INFO,
|
| 12 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
# Define base directory and model path
|
| 16 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 17 |
-
MODEL_PATH = os.path.abspath(os.path.join(BASE_DIR, "../../models/yolov8m.pt"))
|
| 18 |
-
|
| 19 |
-
# Initialize YOLO model
|
| 20 |
-
try:
|
| 21 |
-
model = YOLO(MODEL_PATH)
|
| 22 |
-
logging.info("Loaded YOLOv8m model for signage detection.")
|
| 23 |
-
logging.info(f"Model class names: {model.names}")
|
| 24 |
-
except Exception as e:
|
| 25 |
-
logging.error(f"Failed to load YOLOv8m model: {str(e)}")
|
| 26 |
-
model = None
|
| 27 |
|
| 28 |
def process_signages(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
label
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
x_min, y_min, x_max, y_max = xyxy
|
| 61 |
-
|
| 62 |
-
detection_label = f"Line {line_counter} - {label.capitalize()} (Conf: {conf:.2f})"
|
| 63 |
-
detections.append({
|
| 64 |
-
"type": label,
|
| 65 |
-
"label": detection_label,
|
| 66 |
-
"confidence": conf,
|
| 67 |
-
"coordinates": [x_min, y_min, x_max, y_max]
|
| 68 |
-
})
|
| 69 |
-
|
| 70 |
-
color = (0, 0, 255) # Blue for signage
|
| 71 |
-
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
|
| 72 |
-
cv2.putText(
|
| 73 |
-
frame,
|
| 74 |
-
detection_label,
|
| 75 |
-
(x_min, y_min - 10),
|
| 76 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
| 77 |
-
0.6,
|
| 78 |
-
color,
|
| 79 |
-
2
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
line_counter += 1
|
| 83 |
-
|
| 84 |
-
logging.info(f"Detected {len(detections)} signages in operations_maintenance.")
|
| 85 |
return detections, frame
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
+
from typing import List, Tuple, Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def process_signages(frame: np.ndarray) -> Tuple[List[Dict[str, Any]], np.ndarray]:
|
| 6 |
+
"""
|
| 7 |
+
Detect road signages in the frame.
|
| 8 |
+
Args:
|
| 9 |
+
frame: Input frame as a numpy array.
|
| 10 |
+
Returns:
|
| 11 |
+
Tuple of (list of detections, annotated frame).
|
| 12 |
+
"""
|
| 13 |
+
# Convert to grayscale
|
| 14 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 15 |
+
|
| 16 |
+
# Apply edge detection
|
| 17 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 18 |
+
|
| 19 |
+
# Find contours
|
| 20 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 21 |
+
|
| 22 |
+
detections = []
|
| 23 |
+
for i, contour in enumerate(contours):
|
| 24 |
+
area = cv2.contourArea(contour)
|
| 25 |
+
if area < 200: # Ignore small contours
|
| 26 |
+
continue
|
| 27 |
+
|
| 28 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 29 |
+
x_min, y_min, x_max, y_max = x, y, x + w, y + h
|
| 30 |
+
|
| 31 |
+
detections.append({
|
| 32 |
+
"box": [x_min, y_min, x_max, y_max],
|
| 33 |
+
"label": f"Signage {i+1}",
|
| 34 |
+
"type": "signage"
|
| 35 |
+
})
|
| 36 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
return detections, frame
|