Spaces:
Runtime error
Runtime error
Update services/thermal_service.py
Browse files- services/thermal_service.py +10 -27
services/thermal_service.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
import torch
|
| 2 |
import os
|
|
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
-
from torch.serialization import add_safe_globals
|
| 5 |
import torch.nn.modules.container as container
|
| 6 |
from ultralytics.nn.tasks import DetectionModel
|
| 7 |
from ultralytics.nn.modules import Conv
|
| 8 |
|
| 9 |
-
# ✅ Register all necessary classes
|
| 10 |
add_safe_globals({
|
| 11 |
container.Sequential: "torch.nn.modules.container.Sequential",
|
| 12 |
container.ModuleList: "torch.nn.modules.container.ModuleList",
|
|
@@ -15,40 +15,23 @@ add_safe_globals({
|
|
| 15 |
Conv: "ultralytics.nn.modules.Conv"
|
| 16 |
})
|
| 17 |
|
| 18 |
-
def
|
| 19 |
-
"""
|
| 20 |
-
Force torch to load YOLO weights without weights_only=True limitation.
|
| 21 |
-
"""
|
| 22 |
-
with open(filepath, 'rb') as f:
|
| 23 |
-
return torch.load(f, map_location='cpu', weights_only=False)
|
| 24 |
-
|
| 25 |
-
def load_yolo_model_safely(model_path: str = 'yolov8n.pt') -> YOLO:
|
| 26 |
"""
|
| 27 |
-
|
| 28 |
"""
|
| 29 |
-
if not os.path.isfile(model_path):
|
| 30 |
-
print(f"[INFO] Downloading {model_path}...")
|
| 31 |
-
# Will auto-download internally by Ultralytics YOLO
|
| 32 |
-
|
| 33 |
try:
|
| 34 |
-
model = YOLO(
|
|
|
|
| 35 |
return model
|
| 36 |
except Exception as e:
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
print(f"[INFO] Trying manual safe load...")
|
| 40 |
-
|
| 41 |
-
# Manual fallback load
|
| 42 |
-
weights = custom_safe_load(model_path)
|
| 43 |
-
model = YOLO(model=weights) # Load model from raw weights
|
| 44 |
-
return model
|
| 45 |
|
| 46 |
-
# ✅ Initialize model
|
| 47 |
thermal_model = load_yolo_model_safely()
|
| 48 |
|
| 49 |
def detect_thermal_anomalies(image_path):
|
| 50 |
"""
|
| 51 |
-
Detect anomalies using YOLO model.
|
| 52 |
"""
|
| 53 |
results = thermal_model(image_path)
|
| 54 |
flagged = []
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import torch
|
| 3 |
from ultralytics import YOLO
|
| 4 |
+
from torch.serialization import add_safe_globals
|
| 5 |
import torch.nn.modules.container as container
|
| 6 |
from ultralytics.nn.tasks import DetectionModel
|
| 7 |
from ultralytics.nn.modules import Conv
|
| 8 |
|
| 9 |
+
# ✅ Register all necessary safe classes
|
| 10 |
add_safe_globals({
|
| 11 |
container.Sequential: "torch.nn.modules.container.Sequential",
|
| 12 |
container.ModuleList: "torch.nn.modules.container.ModuleList",
|
|
|
|
| 15 |
Conv: "ultralytics.nn.modules.Conv"
|
| 16 |
})
|
| 17 |
|
| 18 |
+
def load_yolo_model_safely():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"""
|
| 20 |
+
Use direct pretrained YOLOv8n model from Ultralytics Hub (no local weights download needed).
|
| 21 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
+
model = YOLO('yolov8n.pt') # pretrained small model directly from Ultralytics hub
|
| 24 |
+
print("[INFO] YOLOv8 model loaded successfully.")
|
| 25 |
return model
|
| 26 |
except Exception as e:
|
| 27 |
+
print(f"[ERROR] Failed to load YOLO model: {e}")
|
| 28 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
| 30 |
thermal_model = load_yolo_model_safely()
|
| 31 |
|
| 32 |
def detect_thermal_anomalies(image_path):
|
| 33 |
"""
|
| 34 |
+
Detect anomalies in an image using the loaded YOLO model.
|
| 35 |
"""
|
| 36 |
results = thermal_model(image_path)
|
| 37 |
flagged = []
|