Spaces:
Runtime error
Runtime error
| from transformers import pipeline | |
| import cv2 | |
| # Load DETR model from Hugging Face | |
| object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") | |
| def detect_thermal_anomalies(image_path): | |
| """ | |
| Simulate thermal anomalies using DETR object detection. | |
| If an object has a high confidence and occupies a big bounding box, simulate a "hotspot." | |
| """ | |
| image = cv2.imread(image_path) | |
| results = object_detector(image) | |
| anomalies = [] | |
| for result in results: | |
| score = result.get('score', 0) | |
| box = result.get('box', {}) | |
| width = box.get('width', 0) | |
| height = box.get('height', 0) | |
| area = width * height | |
| # Simulate: large bounding boxes + high score = thermal anomaly | |
| if score > 0.7 and area > 5000: # adjust thresholds if needed | |
| anomalies.append({ | |
| "label": result.get('label', ''), | |
| "score": score, | |
| "bbox": box | |
| }) | |
| return anomalies | |