File size: 6,057 Bytes
09b078f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa680b
09b078f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
import torch
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global model variable
model = None

def load_model():
    """Load the sentence transformer model"""
    global model
    if model is None:
        try:
            logger.info("Loading sentence transformer model...")
            model = SentenceTransformer('nabil-tazi/autotrain-d19rl-a8u4f')
            logger.info("Model loaded successfully!")
        except Exception as e:
            logger.error(f"Failed to load model: {e}")
            raise e
    return model

def classify_ambiance(user_input):
    """Classify lighting ambiance from user input"""
    
    if not user_input or not user_input.strip():
        return "❌ Please enter some text", {}, ""
    
    try:
        # Load model if not already loaded
        current_model = load_model()
        
        # Your three reference ambiances
        references = ["bright", "cozy", "natural"]
        
        # Get embeddings
        user_embedding = current_model.encode([user_input.strip()])
        ref_embeddings = current_model.encode(references)
        
        # Calculate similarities
        similarities = cos_sim(user_embedding, ref_embeddings)[0]
        
        # Get best match
        best_idx = similarities.argmax()
        best_ambiance = references[best_idx]
        confidence = float(similarities[best_idx])
        
        # Format all scores for debugging
        all_scores = {ref: round(float(sim), 4) for ref, sim in zip(references, similarities)}
        
        # Create result with emoji
        emoji_map = {"bright": "β˜€οΈ", "cozy": "πŸ•―οΈ", "natural": "🌿"}
        result_text = f"## {emoji_map.get(best_ambiance, 'πŸ’‘')} **{best_ambiance.upper()}**\n**Confidence:** {confidence:.3f}"
        
        # Create confidence bar
        confidence_bar = f"**Confidence Level:** {'β–ˆ' * int(confidence * 20)}{'β–‘' * (20 - int(confidence * 20))} {confidence:.1%}"
        
        logger.info(f"Classified '{user_input}' as '{best_ambiance}' with confidence {confidence:.3f}")
        
        return result_text, all_scores, confidence_bar
        
    except Exception as e:
        error_msg = f"❌ Error: {str(e)}"
        logger.error(f"Classification error: {e}")
        return error_msg, {}, ""

# Create Gradio interface
with gr.Blocks(
    title="🏠 Lighting Ambiance Classifier",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 800px !important;
        margin: auto !important;
    }
    .result-box {
        background: linear-gradient(45deg, #f0f0f0, #ffffff);
        border-radius: 10px;
        padding: 20px;
    }
    """
) as demo:
    
    # Header
    gr.Markdown(
        """
        # 🏠 Lighting Ambiance Classifier
        
        **Classify your lighting preferences into three categories:**
        - β˜€οΈ **Bright**: Well-lit, luminous, clear lighting
        - πŸ•―οΈ **Cozy**: Warm, dim, soft, ambient lighting  
        - 🌿 **Natural**: Daylight, sunlight, organic lighting
        
        **Supports both English and Japanese!** πŸ‡ΊπŸ‡ΈπŸ‡―πŸ‡΅
        """
    )
    
    with gr.Row():
        with gr.Column(scale=2):
            # Input section
            gr.Markdown("### πŸ’¬ Enter your lighting preference:")
            input_text = gr.Textbox(
                label="Your lighting preference",
                placeholder="e.g., 'not bright', 'ζ˜Žγ‚‹γγͺい', 'cozy lighting', 'θ‡ͺη„Άγͺε…‰γŒζ¬²γ—γ„'",
                lines=3,
                max_lines=5
            )
            
            with gr.Row():
                submit_btn = gr.Button("πŸ” Classify", variant="primary", size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
            
        with gr.Column(scale=2):
            # Output section
            gr.Markdown("### 🎯 Classification Result:")
            result = gr.Markdown(value="Enter text and click classify!", elem_classes=["result-box"])
            confidence_bar = gr.Markdown(value="")
    
    # Detailed scores
    with gr.Row():
        scores = gr.JSON(label="πŸ“Š Detailed Similarity Scores", visible=True)
    
    # Example inputs
    gr.Markdown("### πŸ’‘ Try these examples:")
    with gr.Row():
        examples = gr.Examples(
            examples=[
                ["not bright"],
                ["ζ˜Žγ‚‹γγͺい"], 
                ["I want cozy lighting"],
                ["θ‡ͺη„Άγͺε…‰γŒζ¬²γ—γ„"],
                ["make it brighter"],
                ["ζš—γγ—γŸγ„"],
                ["romantic atmosphere"],
                ["作ζ₯­γ—γ‚„γ™γ„ζ˜Žγ‚‹γ•"],
                ["candle light"],
                ["ε€ͺι™½ε…‰γΏγŸγ„"],
                ["harsh fluorescent"],
                ["ε„ͺγ—γ„η…§ζ˜Ž"]
            ],
            inputs=input_text,
            examples_per_page=6
        )
    
    # Footer
    gr.Markdown(
        """
        ---
        **Model:** Fine-tuned multilingual sentence transformer trained on English-Japanese lighting preference pairs.
        
        **How it works:** The model compares your input text with the three ambiance categories and returns the most similar one with a confidence score.
        """
    )
    
    # Event handlers
    def clear_all():
        return "", "Enter text and click classify!", {}, ""
    
    submit_btn.click(
        fn=classify_ambiance,
        inputs=input_text,
        outputs=[result, scores, confidence_bar]
    )
    
    input_text.submit(
        fn=classify_ambiance,
        inputs=input_text,
        outputs=[result, scores, confidence_bar]
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[input_text, result, scores, confidence_bar]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )