Spaces:
Runtime error
Runtime error
Fangrui Liu
commited on
Commit
β’
d0f7013
1
Parent(s):
fc3e81d
add api
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: GPTs Myscale Backend
|
3 |
emoji: π
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
|
|
1 |
---
|
2 |
+
title: GPTs Myscale Backend RestAPI
|
3 |
emoji: π
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import inspect
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
from io import BytesIO
|
7 |
+
from typing import List, Type
|
8 |
+
|
9 |
+
from flask import Flask, jsonify, render_template, request, send_file
|
10 |
+
from flask_restx import Resource, Api, fields
|
11 |
+
from funcs import emb_wiki, emb_arxiv, WikiKnowledgeBase, ArXivKnowledgeBase
|
12 |
+
|
13 |
+
app = Flask(__name__)
|
14 |
+
api = Api(
|
15 |
+
app,
|
16 |
+
version="0.1",
|
17 |
+
terms_url="https://myscale.com/terms/",
|
18 |
+
contact_email="[email protected]",
|
19 |
+
title="MyScale Open Knowledge Base",
|
20 |
+
description="An API to get relevant page from MyScale Open Knowledge Base",
|
21 |
+
)
|
22 |
+
|
23 |
+
query_result = api.model(
|
24 |
+
"QueryResult",
|
25 |
+
{
|
26 |
+
"documents": fields.String,
|
27 |
+
"num_retrieved": fields.Integer,
|
28 |
+
},
|
29 |
+
)
|
30 |
+
|
31 |
+
kb_list = {
|
32 |
+
"wiki": lambda: WikiKnowledgeBase(embedding=emb_wiki),
|
33 |
+
"arxiv": lambda: ArXivKnowledgeBase(embedding=emb_arxiv),
|
34 |
+
}
|
35 |
+
|
36 |
+
query_parser = api.parser()
|
37 |
+
query_parser.add_argument(
|
38 |
+
"subject",
|
39 |
+
required=True,
|
40 |
+
type=str,
|
41 |
+
help="a sentence or phrase describes the subject you want to query.",
|
42 |
+
)
|
43 |
+
query_parser.add_argument(
|
44 |
+
"where_str", required=True, type=str, help="a sql-like where string to build filter"
|
45 |
+
)
|
46 |
+
query_parser.add_argument(
|
47 |
+
"limit", required=False, type=int, default=4, help="desired number of retrieved documents"
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
@api.route(
|
52 |
+
"/get_related_docs/<string:knowledge_base>",
|
53 |
+
doc={
|
54 |
+
"description": (
|
55 |
+
"Get some related papers.\nYou should use schema here:\n\n"
|
56 |
+
"CREATE TABLE ArXiv (\n"
|
57 |
+
" `id` String,\n"
|
58 |
+
" `abstract` String, -- abstract of the paper. avoid using this column to do LIKE match\n"
|
59 |
+
" `pubdate` DateTime, \n"
|
60 |
+
" `title` String, -- title of the paper\n"
|
61 |
+
" `categories` Array(String), -- arxiv category of the paper\n"
|
62 |
+
" `authors` Array(String), -- authors of the paper\n"
|
63 |
+
" `comment` String, -- extra comments of the paper\n"
|
64 |
+
"ORDER BY id\n\n"
|
65 |
+
"CREATE TABLE Wikipedia (\n"
|
66 |
+
" `id` String,\n"
|
67 |
+
" `text` String, -- abstract of the wiki page. avoid using this column to do LIKE match\n"
|
68 |
+
" `title` String, -- title of the paper\n"
|
69 |
+
" `view` Float32,\n"
|
70 |
+
" `url` String, -- URL to this wiki page\n"
|
71 |
+
"ORDER BY id\n\n"
|
72 |
+
"You should avoid using LIKE on long text columns."
|
73 |
+
),
|
74 |
+
},
|
75 |
+
)
|
76 |
+
@api.param("knowledge_base", "Knowledge base used to query. Must be one of ['wiki', 'arxiv']")
|
77 |
+
class get_related_docs(Resource):
|
78 |
+
@api.expect(query_parser)
|
79 |
+
@api.marshal_with(query_result)
|
80 |
+
def get(self, knowledge_base):
|
81 |
+
args = query_parser.parse_args()
|
82 |
+
kb = kb_list[knowledge_base]()
|
83 |
+
print(kb)
|
84 |
+
print(args.subject, args.where_str, args.limit)
|
85 |
+
docs, num_docs = kb(args.subject, args.where_str, args.limit)
|
86 |
+
return {"documents": docs, "num_retrieved": num_docs}
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
# print(json.dumps(api.__schema__))
|
91 |
+
app.run(host="0.0.0.0", port=7860, debug=True)
|
funcs.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import List, Tuple
|
3 |
+
import clickhouse_connect
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from InstructorEmbedding import INSTRUCTOR
|
6 |
+
|
7 |
+
|
8 |
+
emb_wiki = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
9 |
+
emb_arxiv = INSTRUCTOR('hkunlp/instructor-xl')
|
10 |
+
|
11 |
+
class ArXivKnowledgeBase:
|
12 |
+
def __init__(self, embedding: SentenceTransformer) -> None:
|
13 |
+
self.db = clickhouse_connect.get_client(
|
14 |
+
host='msc-4a9e710a.us-east-1.aws.staging.myscale.cloud',
|
15 |
+
port=443,
|
16 |
+
username='chatdata',
|
17 |
+
password='myscale_rocks'
|
18 |
+
)
|
19 |
+
self.embedding: SentenceTransformer = embedding
|
20 |
+
self.table: str = 'default.ChatArXiv'
|
21 |
+
self.embedding_col = "vector"
|
22 |
+
self.must_have_cols: List[str] = ['id', 'abstract', 'authors', 'categories', 'comment', 'title', 'pubdate']
|
23 |
+
|
24 |
+
|
25 |
+
def __call__(self, subject: str, where_str: str = None, limit: int = 5) -> Tuple[str, int]:
|
26 |
+
q_emb = self.embedding.encode(subject).tolist()
|
27 |
+
q_emb_str = ",".join(map(str, q_emb))
|
28 |
+
if where_str:
|
29 |
+
where_str = f"WHERE {where_str}"
|
30 |
+
else:
|
31 |
+
where_str = ""
|
32 |
+
|
33 |
+
q_str = f"""
|
34 |
+
SELECT dist, {','.join(self.must_have_cols)}
|
35 |
+
FROM {self.table}
|
36 |
+
{where_str}
|
37 |
+
ORDER BY distance({self.embedding_col}, [{q_emb_str}])
|
38 |
+
AS dist ASC
|
39 |
+
LIMIT {limit}
|
40 |
+
"""
|
41 |
+
|
42 |
+
docs = [r for r in self.db.query(q_str).named_results()]
|
43 |
+
return '\n'.join([str(d) for d in docs]), len(docs)
|
44 |
+
|
45 |
+
class WikiKnowledgeBase(ArXivKnowledgeBase):
|
46 |
+
def __init__(self, embedding: SentenceTransformer) -> None:
|
47 |
+
super().__init__(embedding)
|
48 |
+
self.table: str = 'wiki.Wikipedia'
|
49 |
+
self.embedding_col = "emb"
|
50 |
+
self.must_have_cols: List[str] = ['text', 'title', 'views', 'url']
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == '__main__':
|
54 |
+
# kb = ArXivKnowledgeBase(embedding=emb_arxiv)
|
55 |
+
kb = WikiKnowledgeBase(embedding=emb_wiki)
|
56 |
+
d = kb("When did Steven Jobs die?", "", 5)
|
57 |
+
print(d)
|
58 |
+
|
59 |
+
|
60 |
+
d = {"components": {
|
61 |
+
"schemas": {
|
62 |
+
"type": "object",
|
63 |
+
"properties": {
|
64 |
+
"todos":{
|
65 |
+
"type": "array",
|
66 |
+
"items":{"type": "string"},
|
67 |
+
"description": "The list of todos.",
|
68 |
+
}
|
69 |
+
}
|
70 |
+
}
|
71 |
+
}
|
72 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
clickhouse_connect
|
2 |
+
flask
|
3 |
+
flask-restx
|