gaia_demo / app.py
my2000cup's picture
Update app.py
11ef136 verified
raw
history blame
2.71 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "my2000cup/Gaia-Petro-LLM"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
def build_prompt(history, system_message, user_message):
# 可以根据你的模型模板调整
messages = []
if system_message:
messages.append({"role": "system", "content": system_message})
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": user_message})
# 使用 tokenizer 的 chat 模板
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return prompt
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p
):
prompt = build_prompt(history, system_message, message)
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
# 流式输出
streamer = None
try:
from transformers import TextIteratorStreamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
except ImportError:
streamer = None
gen_kwargs = dict(
**model_inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
if streamer:
gen_kwargs["streamer"] = streamer
thread = torch.Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text
yield response
thread.join()
else:
output = model.generate(**gen_kwargs)
response = tokenizer.decode(output[0][model_inputs['input_ids'].shape[1]:], skip_special_tokens=True)
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are an oil & gas industry expert.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()