|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "my2000cup/Gaia-Petro-LLM" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
torch_dtype="auto", |
|
|
device_map="auto" |
|
|
) |
|
|
|
|
|
def build_prompt(history, system_message, user_message): |
|
|
|
|
|
messages = [] |
|
|
if system_message: |
|
|
messages.append({"role": "system", "content": system_message}) |
|
|
for user, assistant in history: |
|
|
if user: |
|
|
messages.append({"role": "user", "content": user}) |
|
|
if assistant: |
|
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
messages.append({"role": "user", "content": user_message}) |
|
|
|
|
|
prompt = tokenizer.apply_chat_template( |
|
|
messages, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True |
|
|
) |
|
|
return prompt |
|
|
|
|
|
def respond( |
|
|
message, |
|
|
history, |
|
|
system_message, |
|
|
max_tokens, |
|
|
temperature, |
|
|
top_p |
|
|
): |
|
|
prompt = build_prompt(history, system_message, message) |
|
|
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
|
|
|
|
|
streamer = None |
|
|
try: |
|
|
from transformers import TextIteratorStreamer |
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
except ImportError: |
|
|
streamer = None |
|
|
|
|
|
gen_kwargs = dict( |
|
|
**model_inputs, |
|
|
max_new_tokens=max_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
do_sample=True, |
|
|
pad_token_id=tokenizer.eos_token_id |
|
|
) |
|
|
if streamer: |
|
|
gen_kwargs["streamer"] = streamer |
|
|
thread = torch.Thread(target=model.generate, kwargs=gen_kwargs) |
|
|
thread.start() |
|
|
response = "" |
|
|
for new_text in streamer: |
|
|
response += new_text |
|
|
yield response |
|
|
thread.join() |
|
|
else: |
|
|
output = model.generate(**gen_kwargs) |
|
|
response = tokenizer.decode(output[0][model_inputs['input_ids'].shape[1]:], skip_special_tokens=True) |
|
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="You are an oil & gas industry expert.", label="System message"), |
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider( |
|
|
minimum=0.1, |
|
|
maximum=1.0, |
|
|
value=0.95, |
|
|
step=0.05, |
|
|
label="Top-p (nucleus sampling)", |
|
|
), |
|
|
], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |