import gradio as gr from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name = "muzammil-eds/Meta-Llama-3.1-8B-Instruct-English-to-French-v2", dtype = None, load_in_4bit = True, ) FastLanguageModel.for_inference(model) def process_input(model, tokenizer, input_text): prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Translate the following English text to French. ### Input: {} ### Response: """ formatted_prompt = prompt.format( input_text) inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True) decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] response_start = "### Response:" response = decoded_output.split(response_start)[-1].strip() return response # Define the Gradio interface def gradio_app(input_text): output = process_input(model, tokenizer, input_text) return output # Create the Gradio interface interface = gr.Interface( fn=gradio_app, inputs=gr.Textbox(label="Enter your input text"), outputs=gr.Textbox(label="Generated Output"), title="Text to Response Generator", description="Enter input text and get a response." ) interface.launch()