Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| from typing import Optional | |
| import torch | |
| import comfy.model_management | |
| from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose | |
| class HadaWeight(torch.autograd.Function): | |
| def forward(ctx, w1u, w1d, w2u, w2d, scale=torch.tensor(1)): | |
| ctx.save_for_backward(w1d, w1u, w2d, w2u, scale) | |
| diff_weight = ((w1u @ w1d) * (w2u @ w2d)) * scale | |
| return diff_weight | |
| def backward(ctx, grad_out): | |
| (w1d, w1u, w2d, w2u, scale) = ctx.saved_tensors | |
| grad_out = grad_out * scale | |
| temp = grad_out * (w2u @ w2d) | |
| grad_w1u = temp @ w1d.T | |
| grad_w1d = w1u.T @ temp | |
| temp = grad_out * (w1u @ w1d) | |
| grad_w2u = temp @ w2d.T | |
| grad_w2d = w2u.T @ temp | |
| del temp | |
| return grad_w1u, grad_w1d, grad_w2u, grad_w2d, None | |
| class HadaWeightTucker(torch.autograd.Function): | |
| def forward(ctx, t1, w1u, w1d, t2, w2u, w2d, scale=torch.tensor(1)): | |
| ctx.save_for_backward(t1, w1d, w1u, t2, w2d, w2u, scale) | |
| rebuild1 = torch.einsum("i j ..., j r, i p -> p r ...", t1, w1d, w1u) | |
| rebuild2 = torch.einsum("i j ..., j r, i p -> p r ...", t2, w2d, w2u) | |
| return rebuild1 * rebuild2 * scale | |
| def backward(ctx, grad_out): | |
| (t1, w1d, w1u, t2, w2d, w2u, scale) = ctx.saved_tensors | |
| grad_out = grad_out * scale | |
| temp = torch.einsum("i j ..., j r -> i r ...", t2, w2d) | |
| rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w2u) | |
| grad_w = rebuild * grad_out | |
| del rebuild | |
| grad_w1u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w) | |
| grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w1u.T) | |
| del grad_w, temp | |
| grad_w1d = torch.einsum("i r ..., i j ... -> r j", t1, grad_temp) | |
| grad_t1 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w1d.T) | |
| del grad_temp | |
| temp = torch.einsum("i j ..., j r -> i r ...", t1, w1d) | |
| rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w1u) | |
| grad_w = rebuild * grad_out | |
| del rebuild | |
| grad_w2u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w) | |
| grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w2u.T) | |
| del grad_w, temp | |
| grad_w2d = torch.einsum("i r ..., i j ... -> r j", t2, grad_temp) | |
| grad_t2 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w2d.T) | |
| del grad_temp | |
| return grad_t1, grad_w1u, grad_w1d, grad_t2, grad_w2u, grad_w2d, None | |
| class LohaDiff(WeightAdapterTrainBase): | |
| def __init__(self, weights): | |
| super().__init__() | |
| # Unpack weights tuple from LoHaAdapter | |
| w1a, w1b, alpha, w2a, w2b, t1, t2, _ = weights | |
| # Create trainable parameters | |
| self.hada_w1_a = torch.nn.Parameter(w1a) | |
| self.hada_w1_b = torch.nn.Parameter(w1b) | |
| self.hada_w2_a = torch.nn.Parameter(w2a) | |
| self.hada_w2_b = torch.nn.Parameter(w2b) | |
| self.use_tucker = False | |
| if t1 is not None and t2 is not None: | |
| self.use_tucker = True | |
| self.hada_t1 = torch.nn.Parameter(t1) | |
| self.hada_t2 = torch.nn.Parameter(t2) | |
| else: | |
| # Keep the attributes for consistent access | |
| self.hada_t1 = None | |
| self.hada_t2 = None | |
| # Store rank and non-trainable alpha | |
| self.rank = w1b.shape[0] | |
| self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False) | |
| def __call__(self, w): | |
| org_dtype = w.dtype | |
| scale = self.alpha / self.rank | |
| if self.use_tucker: | |
| diff_weight = HadaWeightTucker.apply(self.hada_t1, self.hada_w1_a, self.hada_w1_b, self.hada_t2, self.hada_w2_a, self.hada_w2_b, scale) | |
| else: | |
| diff_weight = HadaWeight.apply(self.hada_w1_a, self.hada_w1_b, self.hada_w2_a, self.hada_w2_b, scale) | |
| # Add the scaled difference to the original weight | |
| weight = w.to(diff_weight) + diff_weight.reshape(w.shape) | |
| return weight.to(org_dtype) | |
| def passive_memory_usage(self): | |
| """Calculates memory usage of the trainable parameters.""" | |
| return sum(param.numel() * param.element_size() for param in self.parameters()) | |
| class LoHaAdapter(WeightAdapterBase): | |
| name = "loha" | |
| def __init__(self, loaded_keys, weights): | |
| self.loaded_keys = loaded_keys | |
| self.weights = weights | |
| def create_train(cls, weight, rank=1, alpha=1.0): | |
| out_dim = weight.shape[0] | |
| in_dim = weight.shape[1:].numel() | |
| mat1 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype) | |
| mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype) | |
| torch.nn.init.normal_(mat1, 0.1) | |
| torch.nn.init.constant_(mat2, 0.0) | |
| mat3 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype) | |
| mat4 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype) | |
| torch.nn.init.normal_(mat3, 0.1) | |
| torch.nn.init.normal_(mat4, 0.01) | |
| return LohaDiff( | |
| (mat1, mat2, alpha, mat3, mat4, None, None, None) | |
| ) | |
| def to_train(self): | |
| return LohaDiff(self.weights) | |
| def load( | |
| cls, | |
| x: str, | |
| lora: dict[str, torch.Tensor], | |
| alpha: float, | |
| dora_scale: torch.Tensor, | |
| loaded_keys: set[str] = None, | |
| ) -> Optional["LoHaAdapter"]: | |
| if loaded_keys is None: | |
| loaded_keys = set() | |
| hada_w1_a_name = "{}.hada_w1_a".format(x) | |
| hada_w1_b_name = "{}.hada_w1_b".format(x) | |
| hada_w2_a_name = "{}.hada_w2_a".format(x) | |
| hada_w2_b_name = "{}.hada_w2_b".format(x) | |
| hada_t1_name = "{}.hada_t1".format(x) | |
| hada_t2_name = "{}.hada_t2".format(x) | |
| if hada_w1_a_name in lora.keys(): | |
| hada_t1 = None | |
| hada_t2 = None | |
| if hada_t1_name in lora.keys(): | |
| hada_t1 = lora[hada_t1_name] | |
| hada_t2 = lora[hada_t2_name] | |
| loaded_keys.add(hada_t1_name) | |
| loaded_keys.add(hada_t2_name) | |
| weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale) | |
| loaded_keys.add(hada_w1_a_name) | |
| loaded_keys.add(hada_w1_b_name) | |
| loaded_keys.add(hada_w2_a_name) | |
| loaded_keys.add(hada_w2_b_name) | |
| return cls(loaded_keys, weights) | |
| else: | |
| return None | |
| def calculate_weight( | |
| self, | |
| weight, | |
| key, | |
| strength, | |
| strength_model, | |
| offset, | |
| function, | |
| intermediate_dtype=torch.float32, | |
| original_weight=None, | |
| ): | |
| v = self.weights | |
| w1a = v[0] | |
| w1b = v[1] | |
| if v[2] is not None: | |
| alpha = v[2] / w1b.shape[0] | |
| else: | |
| alpha = 1.0 | |
| w2a = v[3] | |
| w2b = v[4] | |
| dora_scale = v[7] | |
| if v[5] is not None: #cp decomposition | |
| t1 = v[5] | |
| t2 = v[6] | |
| m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
| comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype)) | |
| m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
| comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype)) | |
| else: | |
| m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype)) | |
| m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype), | |
| comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype)) | |
| try: | |
| lora_diff = (m1 * m2).reshape(weight.shape) | |
| if dora_scale is not None: | |
| weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
| else: | |
| weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
| except Exception as e: | |
| logging.error("ERROR {} {} {}".format(self.name, key, e)) | |
| return weight | |