Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| This file is part of ComfyUI. | |
| Copyright (C) 2024 Comfy | |
| This program is free software: you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation, either version 3 of the License, or | |
| (at your option) any later version. | |
| This program is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| """ | |
| from __future__ import annotations | |
| import collections | |
| import copy | |
| import inspect | |
| import logging | |
| import math | |
| import uuid | |
| from typing import Callable, Optional | |
| import torch | |
| import comfy.float | |
| import comfy.hooks | |
| import comfy.lora | |
| import comfy.model_management | |
| import comfy.patcher_extension | |
| import comfy.utils | |
| from comfy.comfy_types import UnetWrapperFunction | |
| from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP | |
| def string_to_seed(data): | |
| crc = 0xFFFFFFFF | |
| for byte in data: | |
| if isinstance(byte, str): | |
| byte = ord(byte) | |
| crc ^= byte | |
| for _ in range(8): | |
| if crc & 1: | |
| crc = (crc >> 1) ^ 0xEDB88320 | |
| else: | |
| crc >>= 1 | |
| return crc ^ 0xFFFFFFFF | |
| def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None): | |
| to = model_options["transformer_options"].copy() | |
| if "patches_replace" not in to: | |
| to["patches_replace"] = {} | |
| else: | |
| to["patches_replace"] = to["patches_replace"].copy() | |
| if name not in to["patches_replace"]: | |
| to["patches_replace"][name] = {} | |
| else: | |
| to["patches_replace"][name] = to["patches_replace"][name].copy() | |
| if transformer_index is not None: | |
| block = (block_name, number, transformer_index) | |
| else: | |
| block = (block_name, number) | |
| to["patches_replace"][name][block] = patch | |
| model_options["transformer_options"] = to | |
| return model_options | |
| def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False): | |
| model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] | |
| if disable_cfg1_optimization: | |
| model_options["disable_cfg1_optimization"] = True | |
| return model_options | |
| def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False): | |
| model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function] | |
| if disable_cfg1_optimization: | |
| model_options["disable_cfg1_optimization"] = True | |
| return model_options | |
| def create_model_options_clone(orig_model_options: dict): | |
| return comfy.patcher_extension.copy_nested_dicts(orig_model_options) | |
| def create_hook_patches_clone(orig_hook_patches): | |
| new_hook_patches = {} | |
| for hook_ref in orig_hook_patches: | |
| new_hook_patches[hook_ref] = {} | |
| for k in orig_hook_patches[hook_ref]: | |
| new_hook_patches[hook_ref][k] = orig_hook_patches[hook_ref][k][:] | |
| return new_hook_patches | |
| def wipe_lowvram_weight(m): | |
| if hasattr(m, "prev_comfy_cast_weights"): | |
| m.comfy_cast_weights = m.prev_comfy_cast_weights | |
| del m.prev_comfy_cast_weights | |
| if hasattr(m, "weight_function"): | |
| m.weight_function = [] | |
| if hasattr(m, "bias_function"): | |
| m.bias_function = [] | |
| def move_weight_functions(m, device): | |
| if device is None: | |
| return 0 | |
| memory = 0 | |
| if hasattr(m, "weight_function"): | |
| for f in m.weight_function: | |
| if hasattr(f, "move_to"): | |
| memory += f.move_to(device=device) | |
| if hasattr(m, "bias_function"): | |
| for f in m.bias_function: | |
| if hasattr(f, "move_to"): | |
| memory += f.move_to(device=device) | |
| return memory | |
| class LowVramPatch: | |
| def __init__(self, key, patches): | |
| self.key = key | |
| self.patches = patches | |
| def __call__(self, weight): | |
| intermediate_dtype = weight.dtype | |
| if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops | |
| intermediate_dtype = torch.float32 | |
| return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key)) | |
| return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) | |
| def get_key_weight(model, key): | |
| set_func = None | |
| convert_func = None | |
| op_keys = key.rsplit('.', 1) | |
| if len(op_keys) < 2: | |
| weight = comfy.utils.get_attr(model, key) | |
| else: | |
| op = comfy.utils.get_attr(model, op_keys[0]) | |
| try: | |
| set_func = getattr(op, "set_{}".format(op_keys[1])) | |
| except AttributeError: | |
| pass | |
| try: | |
| convert_func = getattr(op, "convert_{}".format(op_keys[1])) | |
| except AttributeError: | |
| pass | |
| weight = getattr(op, op_keys[1]) | |
| if convert_func is not None: | |
| weight = comfy.utils.get_attr(model, key) | |
| return weight, set_func, convert_func | |
| class AutoPatcherEjector: | |
| def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False): | |
| self.model = model | |
| self.was_injected = False | |
| self.prev_skip_injection = False | |
| self.skip_and_inject_on_exit_only = skip_and_inject_on_exit_only | |
| def __enter__(self): | |
| self.was_injected = False | |
| self.prev_skip_injection = self.model.skip_injection | |
| if self.skip_and_inject_on_exit_only: | |
| self.model.skip_injection = True | |
| if self.model.is_injected: | |
| self.model.eject_model() | |
| self.was_injected = True | |
| def __exit__(self, *args): | |
| if self.skip_and_inject_on_exit_only: | |
| self.model.skip_injection = self.prev_skip_injection | |
| self.model.inject_model() | |
| if self.was_injected and not self.model.skip_injection: | |
| self.model.inject_model() | |
| self.model.skip_injection = self.prev_skip_injection | |
| class MemoryCounter: | |
| def __init__(self, initial: int, minimum=0): | |
| self.value = initial | |
| self.minimum = minimum | |
| # TODO: add a safe limit besides 0 | |
| def use(self, weight: torch.Tensor): | |
| weight_size = weight.nelement() * weight.element_size() | |
| if self.is_useable(weight_size): | |
| self.decrement(weight_size) | |
| return True | |
| return False | |
| def is_useable(self, used: int): | |
| return self.value - used > self.minimum | |
| def decrement(self, used: int): | |
| self.value -= used | |
| class ModelPatcher: | |
| def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False): | |
| self.size = size | |
| self.model = model | |
| if not hasattr(self.model, 'device'): | |
| logging.debug("Model doesn't have a device attribute.") | |
| self.model.device = offload_device | |
| elif self.model.device is None: | |
| self.model.device = offload_device | |
| self.patches = {} | |
| self.backup = {} | |
| self.object_patches = {} | |
| self.object_patches_backup = {} | |
| self.weight_wrapper_patches = {} | |
| self.model_options = {"transformer_options":{}} | |
| self.model_size() | |
| self.load_device = load_device | |
| self.offload_device = offload_device | |
| self.weight_inplace_update = weight_inplace_update | |
| self.force_cast_weights = False | |
| self.patches_uuid = uuid.uuid4() | |
| self.parent = None | |
| self.attachments: dict[str] = {} | |
| self.additional_models: dict[str, list[ModelPatcher]] = {} | |
| self.callbacks: dict[str, dict[str, list[Callable]]] = CallbacksMP.init_callbacks() | |
| self.wrappers: dict[str, dict[str, list[Callable]]] = WrappersMP.init_wrappers() | |
| self.is_injected = False | |
| self.skip_injection = False | |
| self.injections: dict[str, list[PatcherInjection]] = {} | |
| self.hook_patches: dict[comfy.hooks._HookRef] = {} | |
| self.hook_patches_backup: dict[comfy.hooks._HookRef] = None | |
| self.hook_backup: dict[str, tuple[torch.Tensor, torch.device]] = {} | |
| self.cached_hook_patches: dict[comfy.hooks.HookGroup, dict[str, torch.Tensor]] = {} | |
| self.current_hooks: Optional[comfy.hooks.HookGroup] = None | |
| self.forced_hooks: Optional[comfy.hooks.HookGroup] = None # NOTE: only used for CLIP at this time | |
| self.is_clip = False | |
| self.hook_mode = comfy.hooks.EnumHookMode.MaxSpeed | |
| if not hasattr(self.model, 'model_loaded_weight_memory'): | |
| self.model.model_loaded_weight_memory = 0 | |
| if not hasattr(self.model, 'lowvram_patch_counter'): | |
| self.model.lowvram_patch_counter = 0 | |
| if not hasattr(self.model, 'model_lowvram'): | |
| self.model.model_lowvram = False | |
| if not hasattr(self.model, 'current_weight_patches_uuid'): | |
| self.model.current_weight_patches_uuid = None | |
| def model_size(self): | |
| if self.size > 0: | |
| return self.size | |
| self.size = comfy.model_management.module_size(self.model) | |
| return self.size | |
| def loaded_size(self): | |
| return self.model.model_loaded_weight_memory | |
| def lowvram_patch_counter(self): | |
| return self.model.lowvram_patch_counter | |
| def clone(self): | |
| n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update) | |
| n.patches = {} | |
| for k in self.patches: | |
| n.patches[k] = self.patches[k][:] | |
| n.patches_uuid = self.patches_uuid | |
| n.object_patches = self.object_patches.copy() | |
| n.weight_wrapper_patches = self.weight_wrapper_patches.copy() | |
| n.model_options = copy.deepcopy(self.model_options) | |
| n.backup = self.backup | |
| n.object_patches_backup = self.object_patches_backup | |
| n.parent = self | |
| n.force_cast_weights = self.force_cast_weights | |
| # attachments | |
| n.attachments = {} | |
| for k in self.attachments: | |
| if hasattr(self.attachments[k], "on_model_patcher_clone"): | |
| n.attachments[k] = self.attachments[k].on_model_patcher_clone() | |
| else: | |
| n.attachments[k] = self.attachments[k] | |
| # additional models | |
| for k, c in self.additional_models.items(): | |
| n.additional_models[k] = [x.clone() for x in c] | |
| # callbacks | |
| for k, c in self.callbacks.items(): | |
| n.callbacks[k] = {} | |
| for k1, c1 in c.items(): | |
| n.callbacks[k][k1] = c1.copy() | |
| # sample wrappers | |
| for k, w in self.wrappers.items(): | |
| n.wrappers[k] = {} | |
| for k1, w1 in w.items(): | |
| n.wrappers[k][k1] = w1.copy() | |
| # injection | |
| n.is_injected = self.is_injected | |
| n.skip_injection = self.skip_injection | |
| for k, i in self.injections.items(): | |
| n.injections[k] = i.copy() | |
| # hooks | |
| n.hook_patches = create_hook_patches_clone(self.hook_patches) | |
| n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup) if self.hook_patches_backup else self.hook_patches_backup | |
| for group in self.cached_hook_patches: | |
| n.cached_hook_patches[group] = {} | |
| for k in self.cached_hook_patches[group]: | |
| n.cached_hook_patches[group][k] = self.cached_hook_patches[group][k] | |
| n.hook_backup = self.hook_backup | |
| n.current_hooks = self.current_hooks.clone() if self.current_hooks else self.current_hooks | |
| n.forced_hooks = self.forced_hooks.clone() if self.forced_hooks else self.forced_hooks | |
| n.is_clip = self.is_clip | |
| n.hook_mode = self.hook_mode | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_CLONE): | |
| callback(self, n) | |
| return n | |
| def is_clone(self, other): | |
| if hasattr(other, 'model') and self.model is other.model: | |
| return True | |
| return False | |
| def clone_has_same_weights(self, clone: 'ModelPatcher'): | |
| if not self.is_clone(clone): | |
| return False | |
| if self.current_hooks != clone.current_hooks: | |
| return False | |
| if self.forced_hooks != clone.forced_hooks: | |
| return False | |
| if self.hook_patches.keys() != clone.hook_patches.keys(): | |
| return False | |
| if self.attachments.keys() != clone.attachments.keys(): | |
| return False | |
| if self.additional_models.keys() != clone.additional_models.keys(): | |
| return False | |
| for key in self.callbacks: | |
| if len(self.callbacks[key]) != len(clone.callbacks[key]): | |
| return False | |
| for key in self.wrappers: | |
| if len(self.wrappers[key]) != len(clone.wrappers[key]): | |
| return False | |
| if self.injections.keys() != clone.injections.keys(): | |
| return False | |
| if len(self.patches) == 0 and len(clone.patches) == 0: | |
| return True | |
| if self.patches_uuid == clone.patches_uuid: | |
| if len(self.patches) != len(clone.patches): | |
| logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.") | |
| else: | |
| return True | |
| def memory_required(self, input_shape): | |
| return self.model.memory_required(input_shape=input_shape) | |
| def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): | |
| if len(inspect.signature(sampler_cfg_function).parameters) == 3: | |
| self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way | |
| else: | |
| self.model_options["sampler_cfg_function"] = sampler_cfg_function | |
| if disable_cfg1_optimization: | |
| self.model_options["disable_cfg1_optimization"] = True | |
| def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): | |
| self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization) | |
| def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False): | |
| self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization) | |
| def set_model_sampler_calc_cond_batch_function(self, sampler_calc_cond_batch_function): | |
| self.model_options["sampler_calc_cond_batch_function"] = sampler_calc_cond_batch_function | |
| def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction): | |
| self.model_options["model_function_wrapper"] = unet_wrapper_function | |
| def set_model_denoise_mask_function(self, denoise_mask_function): | |
| self.model_options["denoise_mask_function"] = denoise_mask_function | |
| def set_model_patch(self, patch, name): | |
| to = self.model_options["transformer_options"] | |
| if "patches" not in to: | |
| to["patches"] = {} | |
| to["patches"][name] = to["patches"].get(name, []) + [patch] | |
| def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): | |
| self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index) | |
| def set_model_attn1_patch(self, patch): | |
| self.set_model_patch(patch, "attn1_patch") | |
| def set_model_attn2_patch(self, patch): | |
| self.set_model_patch(patch, "attn2_patch") | |
| def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): | |
| self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) | |
| def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): | |
| self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) | |
| def set_model_attn1_output_patch(self, patch): | |
| self.set_model_patch(patch, "attn1_output_patch") | |
| def set_model_attn2_output_patch(self, patch): | |
| self.set_model_patch(patch, "attn2_output_patch") | |
| def set_model_input_block_patch(self, patch): | |
| self.set_model_patch(patch, "input_block_patch") | |
| def set_model_input_block_patch_after_skip(self, patch): | |
| self.set_model_patch(patch, "input_block_patch_after_skip") | |
| def set_model_output_block_patch(self, patch): | |
| self.set_model_patch(patch, "output_block_patch") | |
| def set_model_emb_patch(self, patch): | |
| self.set_model_patch(patch, "emb_patch") | |
| def set_model_forward_timestep_embed_patch(self, patch): | |
| self.set_model_patch(patch, "forward_timestep_embed_patch") | |
| def set_model_double_block_patch(self, patch): | |
| self.set_model_patch(patch, "double_block") | |
| def add_object_patch(self, name, obj): | |
| self.object_patches[name] = obj | |
| def set_model_compute_dtype(self, dtype): | |
| self.add_object_patch("manual_cast_dtype", dtype) | |
| if dtype is not None: | |
| self.force_cast_weights = True | |
| self.patches_uuid = uuid.uuid4() #TODO: optimize by preventing a full model reload for this | |
| def add_weight_wrapper(self, name, function): | |
| self.weight_wrapper_patches[name] = self.weight_wrapper_patches.get(name, []) + [function] | |
| self.patches_uuid = uuid.uuid4() | |
| def get_model_object(self, name: str) -> torch.nn.Module: | |
| """Retrieves a nested attribute from an object using dot notation considering | |
| object patches. | |
| Args: | |
| name (str): The attribute path using dot notation (e.g. "model.layer.weight") | |
| Returns: | |
| The value of the requested attribute | |
| Example: | |
| patcher = ModelPatcher() | |
| weight = patcher.get_model_object("layer1.conv.weight") | |
| """ | |
| if name in self.object_patches: | |
| return self.object_patches[name] | |
| else: | |
| if name in self.object_patches_backup: | |
| return self.object_patches_backup[name] | |
| else: | |
| return comfy.utils.get_attr(self.model, name) | |
| def model_patches_to(self, device): | |
| to = self.model_options["transformer_options"] | |
| if "patches" in to: | |
| patches = to["patches"] | |
| for name in patches: | |
| patch_list = patches[name] | |
| for i in range(len(patch_list)): | |
| if hasattr(patch_list[i], "to"): | |
| patch_list[i] = patch_list[i].to(device) | |
| if "patches_replace" in to: | |
| patches = to["patches_replace"] | |
| for name in patches: | |
| patch_list = patches[name] | |
| for k in patch_list: | |
| if hasattr(patch_list[k], "to"): | |
| patch_list[k] = patch_list[k].to(device) | |
| if "model_function_wrapper" in self.model_options: | |
| wrap_func = self.model_options["model_function_wrapper"] | |
| if hasattr(wrap_func, "to"): | |
| self.model_options["model_function_wrapper"] = wrap_func.to(device) | |
| def model_patches_models(self): | |
| to = self.model_options["transformer_options"] | |
| models = [] | |
| if "patches" in to: | |
| patches = to["patches"] | |
| for name in patches: | |
| patch_list = patches[name] | |
| for i in range(len(patch_list)): | |
| if hasattr(patch_list[i], "models"): | |
| models += patch_list[i].models() | |
| if "patches_replace" in to: | |
| patches = to["patches_replace"] | |
| for name in patches: | |
| patch_list = patches[name] | |
| for k in patch_list: | |
| if hasattr(patch_list[k], "models"): | |
| models += patch_list[k].models() | |
| if "model_function_wrapper" in self.model_options: | |
| wrap_func = self.model_options["model_function_wrapper"] | |
| if hasattr(wrap_func, "models"): | |
| models += wrap_func.models() | |
| return models | |
| def model_dtype(self): | |
| if hasattr(self.model, "get_dtype"): | |
| return self.model.get_dtype() | |
| def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): | |
| with self.use_ejected(): | |
| p = set() | |
| model_sd = self.model.state_dict() | |
| for k in patches: | |
| offset = None | |
| function = None | |
| if isinstance(k, str): | |
| key = k | |
| else: | |
| offset = k[1] | |
| key = k[0] | |
| if len(k) > 2: | |
| function = k[2] | |
| if key in model_sd: | |
| p.add(k) | |
| current_patches = self.patches.get(key, []) | |
| current_patches.append((strength_patch, patches[k], strength_model, offset, function)) | |
| self.patches[key] = current_patches | |
| self.patches_uuid = uuid.uuid4() | |
| return list(p) | |
| def get_key_patches(self, filter_prefix=None): | |
| model_sd = self.model_state_dict() | |
| p = {} | |
| for k in model_sd: | |
| if filter_prefix is not None: | |
| if not k.startswith(filter_prefix): | |
| continue | |
| bk = self.backup.get(k, None) | |
| hbk = self.hook_backup.get(k, None) | |
| weight, set_func, convert_func = get_key_weight(self.model, k) | |
| if bk is not None: | |
| weight = bk.weight | |
| if hbk is not None: | |
| weight = hbk[0] | |
| if convert_func is None: | |
| convert_func = lambda a, **kwargs: a | |
| if k in self.patches: | |
| p[k] = [(weight, convert_func)] + self.patches[k] | |
| else: | |
| p[k] = [(weight, convert_func)] | |
| return p | |
| def model_state_dict(self, filter_prefix=None): | |
| with self.use_ejected(): | |
| sd = self.model.state_dict() | |
| keys = list(sd.keys()) | |
| if filter_prefix is not None: | |
| for k in keys: | |
| if not k.startswith(filter_prefix): | |
| sd.pop(k) | |
| return sd | |
| def patch_weight_to_device(self, key, device_to=None, inplace_update=False): | |
| if key not in self.patches: | |
| return | |
| weight, set_func, convert_func = get_key_weight(self.model, key) | |
| inplace_update = self.weight_inplace_update or inplace_update | |
| if key not in self.backup: | |
| self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update) | |
| if device_to is not None: | |
| temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) | |
| else: | |
| temp_weight = weight.to(torch.float32, copy=True) | |
| if convert_func is not None: | |
| temp_weight = convert_func(temp_weight, inplace=True) | |
| out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key) | |
| if set_func is None: | |
| out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) | |
| if inplace_update: | |
| comfy.utils.copy_to_param(self.model, key, out_weight) | |
| else: | |
| comfy.utils.set_attr_param(self.model, key, out_weight) | |
| else: | |
| set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key)) | |
| def _load_list(self): | |
| loading = [] | |
| for n, m in self.model.named_modules(): | |
| params = [] | |
| skip = False | |
| for name, param in m.named_parameters(recurse=False): | |
| params.append(name) | |
| for name, param in m.named_parameters(recurse=True): | |
| if name not in params: | |
| skip = True # skip random weights in non leaf modules | |
| break | |
| if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0): | |
| loading.append((comfy.model_management.module_size(m), n, m, params)) | |
| return loading | |
| def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): | |
| with self.use_ejected(): | |
| self.unpatch_hooks() | |
| mem_counter = 0 | |
| patch_counter = 0 | |
| lowvram_counter = 0 | |
| loading = self._load_list() | |
| load_completely = [] | |
| loading.sort(reverse=True) | |
| for x in loading: | |
| n = x[1] | |
| m = x[2] | |
| params = x[3] | |
| module_mem = x[0] | |
| lowvram_weight = False | |
| weight_key = "{}.weight".format(n) | |
| bias_key = "{}.bias".format(n) | |
| if not full_load and hasattr(m, "comfy_cast_weights"): | |
| if mem_counter + module_mem >= lowvram_model_memory: | |
| lowvram_weight = True | |
| lowvram_counter += 1 | |
| if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed | |
| continue | |
| cast_weight = self.force_cast_weights | |
| if lowvram_weight: | |
| if hasattr(m, "comfy_cast_weights"): | |
| m.weight_function = [] | |
| m.bias_function = [] | |
| if weight_key in self.patches: | |
| if force_patch_weights: | |
| self.patch_weight_to_device(weight_key) | |
| else: | |
| m.weight_function = [LowVramPatch(weight_key, self.patches)] | |
| patch_counter += 1 | |
| if bias_key in self.patches: | |
| if force_patch_weights: | |
| self.patch_weight_to_device(bias_key) | |
| else: | |
| m.bias_function = [LowVramPatch(bias_key, self.patches)] | |
| patch_counter += 1 | |
| cast_weight = True | |
| else: | |
| if hasattr(m, "comfy_cast_weights"): | |
| wipe_lowvram_weight(m) | |
| if full_load or mem_counter + module_mem < lowvram_model_memory: | |
| mem_counter += module_mem | |
| load_completely.append((module_mem, n, m, params)) | |
| if cast_weight and hasattr(m, "comfy_cast_weights"): | |
| m.prev_comfy_cast_weights = m.comfy_cast_weights | |
| m.comfy_cast_weights = True | |
| if weight_key in self.weight_wrapper_patches: | |
| m.weight_function.extend(self.weight_wrapper_patches[weight_key]) | |
| if bias_key in self.weight_wrapper_patches: | |
| m.bias_function.extend(self.weight_wrapper_patches[bias_key]) | |
| mem_counter += move_weight_functions(m, device_to) | |
| load_completely.sort(reverse=True) | |
| for x in load_completely: | |
| n = x[1] | |
| m = x[2] | |
| params = x[3] | |
| if hasattr(m, "comfy_patched_weights"): | |
| if m.comfy_patched_weights == True: | |
| continue | |
| for param in params: | |
| self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to) | |
| logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) | |
| m.comfy_patched_weights = True | |
| for x in load_completely: | |
| x[2].to(device_to) | |
| if lowvram_counter > 0: | |
| logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter)) | |
| self.model.model_lowvram = True | |
| else: | |
| logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) | |
| self.model.model_lowvram = False | |
| if full_load: | |
| self.model.to(device_to) | |
| mem_counter = self.model_size() | |
| self.model.lowvram_patch_counter += patch_counter | |
| self.model.device = device_to | |
| self.model.model_loaded_weight_memory = mem_counter | |
| self.model.current_weight_patches_uuid = self.patches_uuid | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD): | |
| callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load) | |
| self.apply_hooks(self.forced_hooks, force_apply=True) | |
| def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False): | |
| with self.use_ejected(): | |
| for k in self.object_patches: | |
| old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) | |
| if k not in self.object_patches_backup: | |
| self.object_patches_backup[k] = old | |
| if lowvram_model_memory == 0: | |
| full_load = True | |
| else: | |
| full_load = False | |
| if load_weights: | |
| self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load) | |
| self.inject_model() | |
| return self.model | |
| def unpatch_model(self, device_to=None, unpatch_weights=True): | |
| self.eject_model() | |
| if unpatch_weights: | |
| self.unpatch_hooks() | |
| if self.model.model_lowvram: | |
| for m in self.model.modules(): | |
| move_weight_functions(m, device_to) | |
| wipe_lowvram_weight(m) | |
| self.model.model_lowvram = False | |
| self.model.lowvram_patch_counter = 0 | |
| keys = list(self.backup.keys()) | |
| for k in keys: | |
| bk = self.backup[k] | |
| if bk.inplace_update: | |
| comfy.utils.copy_to_param(self.model, k, bk.weight) | |
| else: | |
| comfy.utils.set_attr_param(self.model, k, bk.weight) | |
| self.model.current_weight_patches_uuid = None | |
| self.backup.clear() | |
| if device_to is not None: | |
| self.model.to(device_to) | |
| self.model.device = device_to | |
| self.model.model_loaded_weight_memory = 0 | |
| for m in self.model.modules(): | |
| if hasattr(m, "comfy_patched_weights"): | |
| del m.comfy_patched_weights | |
| keys = list(self.object_patches_backup.keys()) | |
| for k in keys: | |
| comfy.utils.set_attr(self.model, k, self.object_patches_backup[k]) | |
| self.object_patches_backup.clear() | |
| def partially_unload(self, device_to, memory_to_free=0): | |
| with self.use_ejected(): | |
| hooks_unpatched = False | |
| memory_freed = 0 | |
| patch_counter = 0 | |
| unload_list = self._load_list() | |
| unload_list.sort() | |
| for unload in unload_list: | |
| if memory_to_free < memory_freed: | |
| break | |
| module_mem = unload[0] | |
| n = unload[1] | |
| m = unload[2] | |
| params = unload[3] | |
| lowvram_possible = hasattr(m, "comfy_cast_weights") | |
| if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: | |
| move_weight = True | |
| for param in params: | |
| key = "{}.{}".format(n, param) | |
| bk = self.backup.get(key, None) | |
| if bk is not None: | |
| if not lowvram_possible: | |
| move_weight = False | |
| break | |
| if not hooks_unpatched: | |
| self.unpatch_hooks() | |
| hooks_unpatched = True | |
| if bk.inplace_update: | |
| comfy.utils.copy_to_param(self.model, key, bk.weight) | |
| else: | |
| comfy.utils.set_attr_param(self.model, key, bk.weight) | |
| self.backup.pop(key) | |
| weight_key = "{}.weight".format(n) | |
| bias_key = "{}.bias".format(n) | |
| if move_weight: | |
| cast_weight = self.force_cast_weights | |
| m.to(device_to) | |
| module_mem += move_weight_functions(m, device_to) | |
| if lowvram_possible: | |
| if weight_key in self.patches: | |
| m.weight_function.append(LowVramPatch(weight_key, self.patches)) | |
| patch_counter += 1 | |
| if bias_key in self.patches: | |
| m.bias_function.append(LowVramPatch(bias_key, self.patches)) | |
| patch_counter += 1 | |
| cast_weight = True | |
| if cast_weight: | |
| m.prev_comfy_cast_weights = m.comfy_cast_weights | |
| m.comfy_cast_weights = True | |
| m.comfy_patched_weights = False | |
| memory_freed += module_mem | |
| logging.debug("freed {}".format(n)) | |
| self.model.model_lowvram = True | |
| self.model.lowvram_patch_counter += patch_counter | |
| self.model.model_loaded_weight_memory -= memory_freed | |
| return memory_freed | |
| def partially_load(self, device_to, extra_memory=0, force_patch_weights=False): | |
| with self.use_ejected(skip_and_inject_on_exit_only=True): | |
| unpatch_weights = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid or force_patch_weights) | |
| # TODO: force_patch_weights should not unload + reload full model | |
| used = self.model.model_loaded_weight_memory | |
| self.unpatch_model(self.offload_device, unpatch_weights=unpatch_weights) | |
| if unpatch_weights: | |
| extra_memory += (used - self.model.model_loaded_weight_memory) | |
| self.patch_model(load_weights=False) | |
| full_load = False | |
| if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0: | |
| self.apply_hooks(self.forced_hooks, force_apply=True) | |
| return 0 | |
| if self.model.model_loaded_weight_memory + extra_memory > self.model_size(): | |
| full_load = True | |
| current_used = self.model.model_loaded_weight_memory | |
| try: | |
| self.load(device_to, lowvram_model_memory=current_used + extra_memory, force_patch_weights=force_patch_weights, full_load=full_load) | |
| except Exception as e: | |
| self.detach() | |
| raise e | |
| return self.model.model_loaded_weight_memory - current_used | |
| def detach(self, unpatch_all=True): | |
| self.eject_model() | |
| self.model_patches_to(self.offload_device) | |
| if unpatch_all: | |
| self.unpatch_model(self.offload_device, unpatch_weights=unpatch_all) | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_DETACH): | |
| callback(self, unpatch_all) | |
| return self.model | |
| def current_loaded_device(self): | |
| return self.model.device | |
| def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32): | |
| logging.warning("The ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead") | |
| return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype) | |
| def cleanup(self): | |
| self.clean_hooks() | |
| if hasattr(self.model, "current_patcher"): | |
| self.model.current_patcher = None | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_CLEANUP): | |
| callback(self) | |
| def add_callback(self, call_type: str, callback: Callable): | |
| self.add_callback_with_key(call_type, None, callback) | |
| def add_callback_with_key(self, call_type: str, key: str, callback: Callable): | |
| c = self.callbacks.setdefault(call_type, {}).setdefault(key, []) | |
| c.append(callback) | |
| def remove_callbacks_with_key(self, call_type: str, key: str): | |
| c = self.callbacks.get(call_type, {}) | |
| if key in c: | |
| c.pop(key) | |
| def get_callbacks(self, call_type: str, key: str): | |
| return self.callbacks.get(call_type, {}).get(key, []) | |
| def get_all_callbacks(self, call_type: str): | |
| c_list = [] | |
| for c in self.callbacks.get(call_type, {}).values(): | |
| c_list.extend(c) | |
| return c_list | |
| def add_wrapper(self, wrapper_type: str, wrapper: Callable): | |
| self.add_wrapper_with_key(wrapper_type, None, wrapper) | |
| def add_wrapper_with_key(self, wrapper_type: str, key: str, wrapper: Callable): | |
| w = self.wrappers.setdefault(wrapper_type, {}).setdefault(key, []) | |
| w.append(wrapper) | |
| def remove_wrappers_with_key(self, wrapper_type: str, key: str): | |
| w = self.wrappers.get(wrapper_type, {}) | |
| if key in w: | |
| w.pop(key) | |
| def get_wrappers(self, wrapper_type: str, key: str): | |
| return self.wrappers.get(wrapper_type, {}).get(key, []) | |
| def get_all_wrappers(self, wrapper_type: str): | |
| w_list = [] | |
| for w in self.wrappers.get(wrapper_type, {}).values(): | |
| w_list.extend(w) | |
| return w_list | |
| def set_attachments(self, key: str, attachment): | |
| self.attachments[key] = attachment | |
| def remove_attachments(self, key: str): | |
| if key in self.attachments: | |
| self.attachments.pop(key) | |
| def get_attachment(self, key: str): | |
| return self.attachments.get(key, None) | |
| def set_injections(self, key: str, injections: list[PatcherInjection]): | |
| self.injections[key] = injections | |
| def remove_injections(self, key: str): | |
| if key in self.injections: | |
| self.injections.pop(key) | |
| def get_injections(self, key: str): | |
| return self.injections.get(key, None) | |
| def set_additional_models(self, key: str, models: list['ModelPatcher']): | |
| self.additional_models[key] = models | |
| def remove_additional_models(self, key: str): | |
| if key in self.additional_models: | |
| self.additional_models.pop(key) | |
| def get_additional_models_with_key(self, key: str): | |
| return self.additional_models.get(key, []) | |
| def get_additional_models(self): | |
| all_models = [] | |
| for models in self.additional_models.values(): | |
| all_models.extend(models) | |
| return all_models | |
| def get_nested_additional_models(self): | |
| def _evaluate_sub_additional_models(prev_models: list[ModelPatcher], cache_set: set[ModelPatcher]): | |
| '''Make sure circular references do not cause infinite recursion.''' | |
| next_models = [] | |
| for model in prev_models: | |
| candidates = model.get_additional_models() | |
| for c in candidates: | |
| if c not in cache_set: | |
| next_models.append(c) | |
| cache_set.add(c) | |
| if len(next_models) == 0: | |
| return prev_models | |
| return prev_models + _evaluate_sub_additional_models(next_models, cache_set) | |
| all_models = self.get_additional_models() | |
| models_set = set(all_models) | |
| real_all_models = _evaluate_sub_additional_models(prev_models=all_models, cache_set=models_set) | |
| return real_all_models | |
| def use_ejected(self, skip_and_inject_on_exit_only=False): | |
| return AutoPatcherEjector(self, skip_and_inject_on_exit_only=skip_and_inject_on_exit_only) | |
| def inject_model(self): | |
| if self.is_injected or self.skip_injection: | |
| return | |
| for injections in self.injections.values(): | |
| for inj in injections: | |
| inj.inject(self) | |
| self.is_injected = True | |
| if self.is_injected: | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_INJECT_MODEL): | |
| callback(self) | |
| def eject_model(self): | |
| if not self.is_injected: | |
| return | |
| for injections in self.injections.values(): | |
| for inj in injections: | |
| inj.eject(self) | |
| self.is_injected = False | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_EJECT_MODEL): | |
| callback(self) | |
| def pre_run(self): | |
| if hasattr(self.model, "current_patcher"): | |
| self.model.current_patcher = self | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_PRE_RUN): | |
| callback(self) | |
| def prepare_state(self, timestep): | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_PREPARE_STATE): | |
| callback(self, timestep) | |
| def restore_hook_patches(self): | |
| if self.hook_patches_backup is not None: | |
| self.hook_patches = self.hook_patches_backup | |
| self.hook_patches_backup = None | |
| def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode): | |
| self.hook_mode = hook_mode | |
| def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]): | |
| curr_t = t[0] | |
| reset_current_hooks = False | |
| transformer_options = model_options.get("transformer_options", {}) | |
| for hook in hook_group.hooks: | |
| changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options) | |
| # if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref; | |
| # this will cause the weights to be recalculated when sampling | |
| if changed: | |
| # reset current_hooks if contains hook that changed | |
| if self.current_hooks is not None: | |
| for current_hook in self.current_hooks.hooks: | |
| if current_hook == hook: | |
| reset_current_hooks = True | |
| break | |
| for cached_group in list(self.cached_hook_patches.keys()): | |
| if cached_group.contains(hook): | |
| self.cached_hook_patches.pop(cached_group) | |
| if reset_current_hooks: | |
| self.patch_hooks(None) | |
| def register_all_hook_patches(self, hooks: comfy.hooks.HookGroup, target_dict: dict[str], model_options: dict=None, | |
| registered: comfy.hooks.HookGroup = None): | |
| self.restore_hook_patches() | |
| if registered is None: | |
| registered = comfy.hooks.HookGroup() | |
| # handle WeightHooks | |
| weight_hooks_to_register: list[comfy.hooks.WeightHook] = [] | |
| for hook in hooks.get_type(comfy.hooks.EnumHookType.Weight): | |
| if hook.hook_ref not in self.hook_patches: | |
| weight_hooks_to_register.append(hook) | |
| else: | |
| registered.add(hook) | |
| if len(weight_hooks_to_register) > 0: | |
| # clone hook_patches to become backup so that any non-dynamic hooks will return to their original state | |
| self.hook_patches_backup = create_hook_patches_clone(self.hook_patches) | |
| for hook in weight_hooks_to_register: | |
| hook.add_hook_patches(self, model_options, target_dict, registered) | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_REGISTER_ALL_HOOK_PATCHES): | |
| callback(self, hooks, target_dict, model_options, registered) | |
| return registered | |
| def add_hook_patches(self, hook: comfy.hooks.WeightHook, patches, strength_patch=1.0, strength_model=1.0): | |
| with self.use_ejected(): | |
| # NOTE: this mirrors behavior of add_patches func | |
| current_hook_patches: dict[str,list] = self.hook_patches.get(hook.hook_ref, {}) | |
| p = set() | |
| model_sd = self.model.state_dict() | |
| for k in patches: | |
| offset = None | |
| function = None | |
| if isinstance(k, str): | |
| key = k | |
| else: | |
| offset = k[1] | |
| key = k[0] | |
| if len(k) > 2: | |
| function = k[2] | |
| if key in model_sd: | |
| p.add(k) | |
| current_patches: list[tuple] = current_hook_patches.get(key, []) | |
| current_patches.append((strength_patch, patches[k], strength_model, offset, function)) | |
| current_hook_patches[key] = current_patches | |
| self.hook_patches[hook.hook_ref] = current_hook_patches | |
| # since should care about these patches too to determine if same model, reroll patches_uuid | |
| self.patches_uuid = uuid.uuid4() | |
| return list(p) | |
| def get_combined_hook_patches(self, hooks: comfy.hooks.HookGroup): | |
| # combined_patches will contain weights of all relevant hooks, per key | |
| combined_patches = {} | |
| if hooks is not None: | |
| for hook in hooks.hooks: | |
| hook_patches: dict = self.hook_patches.get(hook.hook_ref, {}) | |
| for key in hook_patches.keys(): | |
| current_patches: list[tuple] = combined_patches.get(key, []) | |
| if math.isclose(hook.strength, 1.0): | |
| current_patches.extend(hook_patches[key]) | |
| else: | |
| # patches are stored as tuples: (strength_patch, (tuple_with_weights,), strength_model) | |
| for patch in hook_patches[key]: | |
| new_patch = list(patch) | |
| new_patch[0] *= hook.strength | |
| current_patches.append(tuple(new_patch)) | |
| combined_patches[key] = current_patches | |
| return combined_patches | |
| def apply_hooks(self, hooks: comfy.hooks.HookGroup, transformer_options: dict=None, force_apply=False): | |
| # TODO: return transformer_options dict with any additions from hooks | |
| if self.current_hooks == hooks and (not force_apply or (not self.is_clip and hooks is None)): | |
| return comfy.hooks.create_transformer_options_from_hooks(self, hooks, transformer_options) | |
| self.patch_hooks(hooks=hooks) | |
| for callback in self.get_all_callbacks(CallbacksMP.ON_APPLY_HOOKS): | |
| callback(self, hooks) | |
| return comfy.hooks.create_transformer_options_from_hooks(self, hooks, transformer_options) | |
| def patch_hooks(self, hooks: comfy.hooks.HookGroup): | |
| with self.use_ejected(): | |
| if hooks is not None: | |
| model_sd_keys = list(self.model_state_dict().keys()) | |
| memory_counter = None | |
| if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: | |
| # TODO: minimum_counter should have a minimum that conforms to loaded model requirements | |
| memory_counter = MemoryCounter(initial=comfy.model_management.get_free_memory(self.load_device), | |
| minimum=comfy.model_management.minimum_inference_memory()*2) | |
| # if have cached weights for hooks, use it | |
| cached_weights = self.cached_hook_patches.get(hooks, None) | |
| if cached_weights is not None: | |
| model_sd_keys_set = set(model_sd_keys) | |
| for key in cached_weights: | |
| if key not in model_sd_keys: | |
| logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}") | |
| continue | |
| self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter) | |
| model_sd_keys_set.remove(key) | |
| self.unpatch_hooks(model_sd_keys_set) | |
| else: | |
| self.unpatch_hooks() | |
| relevant_patches = self.get_combined_hook_patches(hooks=hooks) | |
| original_weights = None | |
| if len(relevant_patches) > 0: | |
| original_weights = self.get_key_patches() | |
| for key in relevant_patches: | |
| if key not in model_sd_keys: | |
| logging.warning(f"Cached hook would not patch. Key does not exist in model: {key}") | |
| continue | |
| self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights, | |
| memory_counter=memory_counter) | |
| else: | |
| self.unpatch_hooks() | |
| self.current_hooks = hooks | |
| def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter): | |
| if key not in self.hook_backup: | |
| weight: torch.Tensor = comfy.utils.get_attr(self.model, key) | |
| target_device = self.offload_device | |
| if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: | |
| used = memory_counter.use(weight) | |
| if used: | |
| target_device = weight.device | |
| self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device) | |
| comfy.utils.copy_to_param(self.model, key, cached_weights[key][0].to(device=cached_weights[key][1])) | |
| def clear_cached_hook_weights(self): | |
| self.cached_hook_patches.clear() | |
| self.patch_hooks(None) | |
| def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter): | |
| if key not in combined_patches: | |
| return | |
| weight, set_func, convert_func = get_key_weight(self.model, key) | |
| weight: torch.Tensor | |
| if key not in self.hook_backup: | |
| target_device = self.offload_device | |
| if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: | |
| used = memory_counter.use(weight) | |
| if used: | |
| target_device = weight.device | |
| self.hook_backup[key] = (weight.to(device=target_device, copy=True), weight.device) | |
| # TODO: properly handle LowVramPatch, if it ends up an issue | |
| temp_weight = comfy.model_management.cast_to_device(weight, weight.device, torch.float32, copy=True) | |
| if convert_func is not None: | |
| temp_weight = convert_func(temp_weight, inplace=True) | |
| out_weight = comfy.lora.calculate_weight(combined_patches[key], | |
| temp_weight, | |
| key, original_weights=original_weights) | |
| del original_weights[key] | |
| if set_func is None: | |
| out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key)) | |
| comfy.utils.copy_to_param(self.model, key, out_weight) | |
| else: | |
| set_func(out_weight, inplace_update=True, seed=string_to_seed(key)) | |
| if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: | |
| # TODO: disable caching if not enough system RAM to do so | |
| target_device = self.offload_device | |
| used = memory_counter.use(weight) | |
| if used: | |
| target_device = weight.device | |
| self.cached_hook_patches.setdefault(hooks, {}) | |
| self.cached_hook_patches[hooks][key] = (out_weight.to(device=target_device, copy=False), weight.device) | |
| del temp_weight | |
| del out_weight | |
| del weight | |
| def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None: | |
| with self.use_ejected(): | |
| if len(self.hook_backup) == 0: | |
| self.current_hooks = None | |
| return | |
| keys = list(self.hook_backup.keys()) | |
| if whitelist_keys_set: | |
| for k in keys: | |
| if k in whitelist_keys_set: | |
| comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1])) | |
| self.hook_backup.pop(k) | |
| else: | |
| for k in keys: | |
| comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1])) | |
| self.hook_backup.clear() | |
| self.current_hooks = None | |
| def clean_hooks(self): | |
| self.unpatch_hooks() | |
| self.clear_cached_hook_weights() | |
| def __del__(self): | |
| self.detach(unpatch_all=False) | |