Spaces:
Runtime error
Runtime error
Delete clipseg/metrics.py
Browse files- clipseg/metrics.py +0 -271
clipseg/metrics.py
DELETED
|
@@ -1,271 +0,0 @@
|
|
| 1 |
-
from torch.functional import Tensor
|
| 2 |
-
from general_utils import log
|
| 3 |
-
from collections import defaultdict
|
| 4 |
-
import numpy as np
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
from torch.nn import functional as nnf
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class BaseMetric(object):
|
| 11 |
-
|
| 12 |
-
def __init__(self, metric_names, pred_range=None, gt_index=0, pred_index=0, eval_intermediate=True,
|
| 13 |
-
eval_validation=True):
|
| 14 |
-
self._names = tuple(metric_names)
|
| 15 |
-
self._eval_intermediate = eval_intermediate
|
| 16 |
-
self._eval_validation = eval_validation
|
| 17 |
-
|
| 18 |
-
self._pred_range = pred_range
|
| 19 |
-
self._pred_index = pred_index
|
| 20 |
-
self._gt_index = gt_index
|
| 21 |
-
|
| 22 |
-
self.predictions = []
|
| 23 |
-
self.ground_truths = []
|
| 24 |
-
|
| 25 |
-
def eval_intermediate(self):
|
| 26 |
-
return self._eval_intermediate
|
| 27 |
-
|
| 28 |
-
def eval_validation(self):
|
| 29 |
-
return self._eval_validation
|
| 30 |
-
|
| 31 |
-
def names(self):
|
| 32 |
-
return self._names
|
| 33 |
-
|
| 34 |
-
def add(self, predictions, ground_truth):
|
| 35 |
-
raise NotImplementedError
|
| 36 |
-
|
| 37 |
-
def value(self):
|
| 38 |
-
raise NotImplementedError
|
| 39 |
-
|
| 40 |
-
def scores(self):
|
| 41 |
-
# similar to value but returns dict
|
| 42 |
-
value = self.value()
|
| 43 |
-
if type(value) == dict:
|
| 44 |
-
return value
|
| 45 |
-
else:
|
| 46 |
-
assert type(value) in {list, tuple}
|
| 47 |
-
return list(zip(self.names(), self.value()))
|
| 48 |
-
|
| 49 |
-
def _get_pred_gt(self, predictions, ground_truth):
|
| 50 |
-
pred = predictions[self._pred_index]
|
| 51 |
-
gt = ground_truth[self._gt_index]
|
| 52 |
-
|
| 53 |
-
if self._pred_range is not None:
|
| 54 |
-
pred = pred[:, self._pred_range[0]: self._pred_range[1]]
|
| 55 |
-
|
| 56 |
-
return pred, gt
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
class FixedIntervalMetrics(BaseMetric):
|
| 60 |
-
|
| 61 |
-
def __init__(self, sigmoid=False, ignore_mask=False, resize_to=None,
|
| 62 |
-
resize_pred=None, n_values=51, custom_threshold=None):
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
super().__init__(('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'))
|
| 66 |
-
self.intersections = []
|
| 67 |
-
self.unions = []
|
| 68 |
-
# self.threshold = threshold
|
| 69 |
-
self.sigmoid = sigmoid
|
| 70 |
-
self.resize_to = resize_to
|
| 71 |
-
self.resize_pred = resize_pred # resize prediction to match ground truth
|
| 72 |
-
self.class_count = defaultdict(lambda: 0)
|
| 73 |
-
self.per_class = defaultdict(lambda : [0,0])
|
| 74 |
-
self.ignore_mask = ignore_mask
|
| 75 |
-
self.custom_threshold = custom_threshold
|
| 76 |
-
|
| 77 |
-
self.scores_ap = []
|
| 78 |
-
self.scores_iou = []
|
| 79 |
-
self.gts, self.preds = [], []
|
| 80 |
-
self.classes = []
|
| 81 |
-
|
| 82 |
-
# [1:-1] ignores 0 and 1
|
| 83 |
-
self.threshold_values = np.linspace(0, 1, n_values)[1:-1]
|
| 84 |
-
|
| 85 |
-
self.metrics = dict(tp=[], fp=[], fn=[], tn=[])
|
| 86 |
-
|
| 87 |
-
def add(self, pred, gt):
|
| 88 |
-
|
| 89 |
-
pred_batch = pred[0].cpu()
|
| 90 |
-
|
| 91 |
-
if self.sigmoid:
|
| 92 |
-
pred_batch = torch.sigmoid(pred_batch)
|
| 93 |
-
|
| 94 |
-
gt_batch = gt[0].cpu()
|
| 95 |
-
mask_batch = gt[1] if len(gt) > 1 and not self.ignore_mask and gt[1].numel() > 0 else ([None] * len(pred_batch))
|
| 96 |
-
cls_batch = gt[2] if len(gt) > 2 else [None] * len(pred_batch)
|
| 97 |
-
|
| 98 |
-
if self.resize_to is not None:
|
| 99 |
-
gt_batch = nnf.interpolate(gt_batch, self.resize_to, mode='nearest')
|
| 100 |
-
pred_batch = nnf.interpolate(pred_batch, self.resize_to, mode='bilinear', align_corners=False)
|
| 101 |
-
|
| 102 |
-
if isinstance(cls_batch, torch.Tensor):
|
| 103 |
-
cls_batch = cls_batch.cpu().numpy().tolist()
|
| 104 |
-
|
| 105 |
-
assert len(gt_batch) == len(pred_batch) == len(cls_batch), f'{len(gt_batch)} {len(pred_batch)} {len(cls_batch)}'
|
| 106 |
-
|
| 107 |
-
for predictions, ground_truth, mask, cls in zip(pred_batch, gt_batch, mask_batch, cls_batch):
|
| 108 |
-
|
| 109 |
-
if self.resize_pred:
|
| 110 |
-
predictions = nnf.interpolate(predictions.unsqueeze(0).float(), size=ground_truth.size()[-2:], mode='bilinear', align_corners=True)
|
| 111 |
-
|
| 112 |
-
p = predictions.flatten()
|
| 113 |
-
g = ground_truth.flatten()
|
| 114 |
-
|
| 115 |
-
assert len(p) == len(g)
|
| 116 |
-
|
| 117 |
-
if mask is not None:
|
| 118 |
-
m = mask.flatten().bool()
|
| 119 |
-
p = p[m]
|
| 120 |
-
g = g[m]
|
| 121 |
-
|
| 122 |
-
p_sorted = p.sort()
|
| 123 |
-
p = p_sorted.values
|
| 124 |
-
g = g[p_sorted.indices]
|
| 125 |
-
|
| 126 |
-
tps, fps, fns, tns = [], [], [], []
|
| 127 |
-
for thresh in self.threshold_values:
|
| 128 |
-
|
| 129 |
-
valid = torch.where(p > thresh)[0]
|
| 130 |
-
if len(valid) > 0:
|
| 131 |
-
n = int(valid[0])
|
| 132 |
-
else:
|
| 133 |
-
n = len(g)
|
| 134 |
-
|
| 135 |
-
fn = int(g[:n].sum())
|
| 136 |
-
tp = int(g[n:].sum())
|
| 137 |
-
fns += [fn]
|
| 138 |
-
tns += [n - fn]
|
| 139 |
-
tps += [tp]
|
| 140 |
-
fps += [len(g) - n - tp]
|
| 141 |
-
|
| 142 |
-
self.metrics['tp'] += [tps]
|
| 143 |
-
self.metrics['fp'] += [fps]
|
| 144 |
-
self.metrics['fn'] += [fns]
|
| 145 |
-
self.metrics['tn'] += [tns]
|
| 146 |
-
|
| 147 |
-
self.classes += [cls.item() if isinstance(cls, torch.Tensor) else cls]
|
| 148 |
-
|
| 149 |
-
def value(self):
|
| 150 |
-
|
| 151 |
-
import time
|
| 152 |
-
t_start = time.time()
|
| 153 |
-
|
| 154 |
-
if set(self.classes) == set([None]):
|
| 155 |
-
all_classes = None
|
| 156 |
-
log.warning('classes were not provided, cannot compute mIoU')
|
| 157 |
-
else:
|
| 158 |
-
all_classes = set(int(c) for c in self.classes)
|
| 159 |
-
# log.info(f'compute metrics for {len(all_classes)} classes')
|
| 160 |
-
|
| 161 |
-
summed = {k: [sum([self.metrics[k][i][j]
|
| 162 |
-
for i in range(len(self.metrics[k]))])
|
| 163 |
-
for j in range(len(self.threshold_values))]
|
| 164 |
-
for k in self.metrics.keys()}
|
| 165 |
-
|
| 166 |
-
if all_classes is not None:
|
| 167 |
-
|
| 168 |
-
assert len(self.classes) == len(self.metrics['tp']) == len(self.metrics['fn'])
|
| 169 |
-
# group by class
|
| 170 |
-
metrics_by_class = {c: {k: [] for k in self.metrics.keys()} for c in all_classes}
|
| 171 |
-
for i in range(len(self.metrics['tp'])):
|
| 172 |
-
for k in self.metrics.keys():
|
| 173 |
-
metrics_by_class[self.classes[i]][k] += [self.metrics[k][i]]
|
| 174 |
-
|
| 175 |
-
# sum over all instances within the classes
|
| 176 |
-
summed_by_cls = {k: {c: np.array(metrics_by_class[c][k]).sum(0).tolist() for c in all_classes} for k in self.metrics.keys()}
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
# Compute average precision
|
| 180 |
-
|
| 181 |
-
assert (np.array(summed['fp']) + np.array(summed['tp']) ).sum(), 'no predictions is made'
|
| 182 |
-
|
| 183 |
-
# only consider values where a prediction is made
|
| 184 |
-
precisions = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j]) for j in range(len(self.threshold_values))
|
| 185 |
-
if summed['tp'][j] + summed['fp'][j] > 0]
|
| 186 |
-
recalls = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))
|
| 187 |
-
if summed['tp'][j] + summed['fp'][j] > 0]
|
| 188 |
-
|
| 189 |
-
# remove duplicate recall-precision-pairs (and sort by recall value)
|
| 190 |
-
recalls, precisions = zip(*sorted(list(set(zip(recalls, precisions))), key=lambda x: x[0]))
|
| 191 |
-
|
| 192 |
-
from scipy.integrate import simps
|
| 193 |
-
ap = simps(precisions, recalls)
|
| 194 |
-
|
| 195 |
-
# Compute best IoU
|
| 196 |
-
fgiou_scores = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))]
|
| 197 |
-
|
| 198 |
-
biniou_scores = [
|
| 199 |
-
0.5*(summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j])) +
|
| 200 |
-
0.5*(summed['tn'][j] / (1 + summed['tn'][j] + summed['fn'][j] + summed['fp'][j]))
|
| 201 |
-
for j in range(len(self.threshold_values))
|
| 202 |
-
]
|
| 203 |
-
|
| 204 |
-
index_0p5 = self.threshold_values.tolist().index(0.5)
|
| 205 |
-
index_0p1 = self.threshold_values.tolist().index(0.1)
|
| 206 |
-
index_0p2 = self.threshold_values.tolist().index(0.2)
|
| 207 |
-
index_0p3 = self.threshold_values.tolist().index(0.3)
|
| 208 |
-
|
| 209 |
-
if self.custom_threshold is not None:
|
| 210 |
-
index_ct = self.threshold_values.tolist().index(self.custom_threshold)
|
| 211 |
-
|
| 212 |
-
if all_classes is not None:
|
| 213 |
-
# mean IoU
|
| 214 |
-
mean_ious = [np.mean([summed_by_cls['tp'][c][j] / (1 + summed_by_cls['tp'][c][j] + summed_by_cls['fp'][c][j] + summed_by_cls['fn'][c][j])
|
| 215 |
-
for c in all_classes])
|
| 216 |
-
for j in range(len(self.threshold_values))]
|
| 217 |
-
|
| 218 |
-
mean_iou_dict = {
|
| 219 |
-
'miou_best': max(mean_ious) if all_classes is not None else None,
|
| 220 |
-
'miou_0.5': mean_ious[index_0p5] if all_classes is not None else None,
|
| 221 |
-
'miou_0.1': mean_ious[index_0p1] if all_classes is not None else None,
|
| 222 |
-
'miou_0.2': mean_ious[index_0p2] if all_classes is not None else None,
|
| 223 |
-
'miou_0.3': mean_ious[index_0p3] if all_classes is not None else None,
|
| 224 |
-
'miou_best_t': self.threshold_values[np.argmax(mean_ious)],
|
| 225 |
-
'mean_iou_ct': mean_ious[index_ct] if all_classes is not None and self.custom_threshold is not None else None,
|
| 226 |
-
'mean_iou_scores': mean_ious,
|
| 227 |
-
}
|
| 228 |
-
|
| 229 |
-
print(f'metric computation on {(len(all_classes) if all_classes is not None else "no")} classes took {time.time() - t_start:.1f}s')
|
| 230 |
-
|
| 231 |
-
return {
|
| 232 |
-
'ap': ap,
|
| 233 |
-
|
| 234 |
-
# fgiou
|
| 235 |
-
'fgiou_best': max(fgiou_scores),
|
| 236 |
-
'fgiou_0.5': fgiou_scores[index_0p5],
|
| 237 |
-
'fgiou_0.1': fgiou_scores[index_0p1],
|
| 238 |
-
'fgiou_0.2': fgiou_scores[index_0p2],
|
| 239 |
-
'fgiou_0.3': fgiou_scores[index_0p3],
|
| 240 |
-
'fgiou_best_t': self.threshold_values[np.argmax(fgiou_scores)],
|
| 241 |
-
|
| 242 |
-
# mean iou
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
# biniou
|
| 246 |
-
'biniou_best': max(biniou_scores),
|
| 247 |
-
'biniou_0.5': biniou_scores[index_0p5],
|
| 248 |
-
'biniou_0.1': biniou_scores[index_0p1],
|
| 249 |
-
'biniou_0.2': biniou_scores[index_0p2],
|
| 250 |
-
'biniou_0.3': biniou_scores[index_0p3],
|
| 251 |
-
'biniou_best_t': self.threshold_values[np.argmax(biniou_scores)],
|
| 252 |
-
|
| 253 |
-
# custom threshold
|
| 254 |
-
'fgiou_ct': fgiou_scores[index_ct] if self.custom_threshold is not None else None,
|
| 255 |
-
'biniou_ct': biniou_scores[index_ct] if self.custom_threshold is not None else None,
|
| 256 |
-
'ct': self.custom_threshold,
|
| 257 |
-
|
| 258 |
-
# statistics
|
| 259 |
-
'fgiou_scores': fgiou_scores,
|
| 260 |
-
'biniou_scores': biniou_scores,
|
| 261 |
-
'precision_recall_curve': sorted(list(set(zip(recalls, precisions)))),
|
| 262 |
-
'summed_statistics': summed,
|
| 263 |
-
'summed_by_cls_statistics': summed_by_cls,
|
| 264 |
-
|
| 265 |
-
**mean_iou_dict
|
| 266 |
-
}
|
| 267 |
-
|
| 268 |
-
# ('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'
|
| 269 |
-
|
| 270 |
-
# return ap, best_fgiou, best_mean_iou, iou_0p5, iou_0p1, mean_iou_0p5, mean_iou_0p1, best_biniou, biniou0p5, best_fgiou_thresh, {'summed': summed, 'summed_by_cls': summed_by_cls}
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|