Spaces:
Runtime error
Runtime error
Commit
·
03b43e9
1
Parent(s):
02a9af1
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,16 +18,14 @@ from pathlib import Path
|
|
| 18 |
MAX_IMAGES = 50
|
| 19 |
|
| 20 |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
|
| 21 |
-
subprocess.run(['wget', training_script_url])
|
| 22 |
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset")
|
| 26 |
-
|
| 27 |
#Delete .gitattributes to process things properly
|
| 28 |
Path(FACES_DATASET_PATH, '.gitattributes').unlink(missing_ok=True)
|
| 29 |
|
| 30 |
-
|
| 31 |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 32 |
model = Blip2ForConditionalGeneration.from_pretrained(
|
| 33 |
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16
|
|
@@ -287,11 +285,22 @@ git+https://github.com/huggingface/datasets.git'''
|
|
| 287 |
# The subprocess call for autotrain spacerunner
|
| 288 |
api = HfApi(token=token)
|
| 289 |
username = api.whoami()["name"]
|
| 290 |
-
subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-
|
| 291 |
print(subprocess_command)
|
| 292 |
subprocess.run(subprocess_command)
|
| 293 |
-
return f"
|
|
|
|
|
|
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
def start_training_og(
|
| 296 |
lora_name,
|
| 297 |
training_option,
|
|
@@ -443,23 +452,41 @@ def run_captioning(*inputs):
|
|
| 443 |
def check_token(token):
|
| 444 |
try:
|
| 445 |
api = HfApi(token=token)
|
|
|
|
| 446 |
except Exception as e:
|
| 447 |
-
gr.Warning("Invalid user token. Make sure to get your Hugging Face")
|
| 448 |
else:
|
| 449 |
-
user_data
|
| 450 |
-
if (username['auth']['accessToken']['role'] != "write"):
|
| 451 |
gr.Warning("Oops, you've uploaded a `Read` token. You need to use a Write token!")
|
| 452 |
else:
|
| 453 |
if user_data['canPay']:
|
| 454 |
return gr.update(visible=False), gr.update(visible=True)
|
| 455 |
else:
|
|
|
|
| 456 |
return gr.update(visible=True), gr.update(visible=False)
|
| 457 |
|
| 458 |
return gr.update(visible=False), gr.update(visible=False)
|
| 459 |
|
| 460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
dataset_folder = gr.State()
|
| 462 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 463 |
lora_name = gr.Textbox(label="The name of your LoRA", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
|
| 464 |
training_option = gr.Radio(
|
| 465 |
label="What are you training?", choices=["object", "style", "face", "custom"]
|
|
@@ -496,7 +523,7 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 496 |
with locals()[f"captioning_row_{i}"]:
|
| 497 |
locals()[f"image_{i}"] = gr.Image(
|
| 498 |
width=64,
|
| 499 |
-
height=
|
| 500 |
min_width=64,
|
| 501 |
interactive=False,
|
| 502 |
scale=1,
|
|
@@ -544,7 +571,6 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 544 |
step=0.0000001,
|
| 545 |
value=1.0, # For prodigy you start high and it will optimize down
|
| 546 |
)
|
| 547 |
-
train_batch_size = gr.Number(label="Train batch size", value=2)
|
| 548 |
max_train_steps = gr.Number(
|
| 549 |
label="Max train steps", minimum=1, maximum=50000, value=1000
|
| 550 |
)
|
|
@@ -589,7 +615,7 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 589 |
train_text_encoder_ti = gr.Checkbox(
|
| 590 |
label="Do textual inversion",
|
| 591 |
value=True,
|
| 592 |
-
info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly.",
|
| 593 |
)
|
| 594 |
with gr.Group(visible=True) as pivotal_tuning_params:
|
| 595 |
train_text_encoder_ti_frac = gr.Number(
|
|
@@ -633,27 +659,48 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 633 |
with gr.Accordion(open=False, label="Even more advanced options"):
|
| 634 |
with gr.Row():
|
| 635 |
with gr.Column():
|
| 636 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
checkpointing_steps = gr.Number(
|
| 638 |
-
|
|
|
|
|
|
|
| 639 |
)
|
| 640 |
-
prior_loss_weight = gr.Number(
|
| 641 |
-
|
| 642 |
-
|
| 643 |
)
|
| 644 |
gradient_checkpointing = gr.Checkbox(
|
| 645 |
label="gradient_checkpointing",
|
| 646 |
info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass",
|
| 647 |
value=True,
|
| 648 |
)
|
| 649 |
-
enable_xformers_memory_efficient_attention = gr.Checkbox(
|
| 650 |
-
label="enable_xformers_memory_efficient_attention"
|
| 651 |
-
)
|
| 652 |
adam_beta1 = gr.Number(
|
| 653 |
-
label="adam_beta1",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 654 |
)
|
| 655 |
adam_beta2 = gr.Number(
|
| 656 |
-
label="adam_beta2",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
)
|
| 658 |
prodigy_beta3 = gr.Number(
|
| 659 |
label="Prodigy Beta 3",
|
|
@@ -685,10 +732,12 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 685 |
maximum=1,
|
| 686 |
)
|
| 687 |
prodigy_use_bias_correction = gr.Checkbox(
|
| 688 |
-
label="Prodigy Use Bias Correction",
|
|
|
|
| 689 |
)
|
| 690 |
prodigy_safeguard_warmup = gr.Checkbox(
|
| 691 |
-
label="Prodigy Safeguard Warmup",
|
|
|
|
| 692 |
)
|
| 693 |
max_grad_norm = gr.Number(
|
| 694 |
label="Max Grad Norm",
|
|
@@ -697,12 +746,18 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 697 |
maximum=10,
|
| 698 |
step=0.1,
|
| 699 |
)
|
|
|
|
|
|
|
|
|
|
| 700 |
with gr.Column():
|
| 701 |
scale_lr = gr.Checkbox(
|
| 702 |
label="Scale learning rate",
|
| 703 |
info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size",
|
| 704 |
)
|
| 705 |
-
lr_num_cycles = gr.Number(
|
|
|
|
|
|
|
|
|
|
| 706 |
lr_scheduler = gr.Dropdown(
|
| 707 |
label="lr_scheduler",
|
| 708 |
choices=[
|
|
@@ -716,25 +771,32 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
| 716 |
value="constant",
|
| 717 |
)
|
| 718 |
lr_power = gr.Number(
|
| 719 |
-
label="lr_power",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 720 |
)
|
| 721 |
-
lr_warmup_steps = gr.Number(label="lr_warmup_steps", value=0)
|
| 722 |
dataloader_num_workers = gr.Number(
|
| 723 |
label="Dataloader num workers", value=0, minimum=0, maximum=64
|
| 724 |
)
|
| 725 |
-
local_rank = gr.Number(
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
|
|
|
| 732 |
with gr.Group(visible=False) as no_payment_method:
|
| 733 |
with gr.Row():
|
| 734 |
-
gr.Markdown("Your Hugging Face account doesn't have a payment method. Set it up [here](https://huggingface.co/settings/billing/payment) to train your LoRA")
|
| 735 |
payment_setup = gr.Button("I have set up my payment method")
|
| 736 |
-
start = gr.Button("Start training", visible=False)
|
| 737 |
-
progress_area = gr.
|
| 738 |
output_components.insert(1, advanced)
|
| 739 |
output_components.insert(1, cost_estimation)
|
| 740 |
|
|
@@ -745,13 +807,14 @@ Grab a Hugging Face <b>write</b> token [here](https://huggingface.co/settings/to
|
|
| 745 |
],
|
| 746 |
fn=check_token,
|
| 747 |
inputs=token,
|
| 748 |
-
outputs=[no_payment_method, start]
|
|
|
|
| 749 |
)
|
| 750 |
use_snr_gamma.change(
|
| 751 |
lambda x: gr.update(visible=x),
|
| 752 |
inputs=use_snr_gamma,
|
| 753 |
outputs=snr_gamma,
|
| 754 |
-
queue=False
|
| 755 |
)
|
| 756 |
with_prior_preservation.change(
|
| 757 |
lambda x: gr.update(visible=x),
|
|
@@ -783,26 +846,39 @@ Grab a Hugging Face <b>write</b> token [here](https://huggingface.co/settings/to
|
|
| 783 |
queue=False
|
| 784 |
)
|
| 785 |
images.upload(
|
| 786 |
-
load_captioning,
|
|
|
|
|
|
|
|
|
|
| 787 |
).then(
|
| 788 |
change_defaults,
|
| 789 |
inputs=[training_option, images],
|
| 790 |
-
outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images]
|
|
|
|
| 791 |
)
|
| 792 |
images.change(
|
| 793 |
check_removed_and_restart,
|
| 794 |
inputs=[images],
|
| 795 |
outputs=[captioning_area, advanced, cost_estimation],
|
|
|
|
| 796 |
)
|
| 797 |
training_option.change(
|
| 798 |
make_options_visible,
|
| 799 |
inputs=training_option,
|
| 800 |
outputs=[concept_sentence, image_upload],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 801 |
)
|
| 802 |
start.click(
|
| 803 |
fn=create_dataset,
|
| 804 |
inputs=[images] + caption_list,
|
| 805 |
-
outputs=dataset_folder
|
|
|
|
| 806 |
).then(
|
| 807 |
fn=start_training,
|
| 808 |
inputs=[
|
|
@@ -856,7 +932,8 @@ Grab a Hugging Face <b>write</b> token [here](https://huggingface.co/settings/to
|
|
| 856 |
dataset_folder,
|
| 857 |
token
|
| 858 |
],
|
| 859 |
-
outputs = progress_area
|
|
|
|
| 860 |
)
|
| 861 |
|
| 862 |
do_captioning.click(
|
|
|
|
| 18 |
MAX_IMAGES = 50
|
| 19 |
|
| 20 |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
|
| 21 |
+
subprocess.run(['wget', '-N', training_script_url])
|
| 22 |
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset")
|
|
|
|
| 26 |
#Delete .gitattributes to process things properly
|
| 27 |
Path(FACES_DATASET_PATH, '.gitattributes').unlink(missing_ok=True)
|
| 28 |
|
|
|
|
| 29 |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 30 |
model = Blip2ForConditionalGeneration.from_pretrained(
|
| 31 |
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16
|
|
|
|
| 285 |
# The subprocess call for autotrain spacerunner
|
| 286 |
api = HfApi(token=token)
|
| 287 |
username = api.whoami()["name"]
|
| 288 |
+
subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-a10gs", "--env","HF_TOKEN=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;HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args]
|
| 289 |
print(subprocess_command)
|
| 290 |
subprocess.run(subprocess_command)
|
| 291 |
+
return f"""# Your training has started.
|
| 292 |
+
## - Model page: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a> <small>(the model will be available when training finishes)</small>
|
| 293 |
+
## - Training Status: <a href='https://huggingface.co/spaces/{username}/autotrain-{slugged_lora_name}?logs=container'>{username}/autotrain-{slugged_lora_name}</a> <small>(in the logs tab)</small>"""
|
| 294 |
|
| 295 |
+
def calculate_price(iterations):
|
| 296 |
+
seconds_per_iteration = 3.50
|
| 297 |
+
total_seconds = (iterations * seconds_per_iteration) + 210
|
| 298 |
+
cost_per_second = 1.05/60/60
|
| 299 |
+
cost = round(cost_per_second * total_seconds, 2)
|
| 300 |
+
return f'''To train this LoRA, we will duplicate the space and hook an A10G GPU under the hood.
|
| 301 |
+
## Estimated to cost <b>< US$ {str(cost)}</b> with your current train settings <small>({int(iterations)} iterations at 3.50s/it in Spaces A10G at US$1.05/h)</small>
|
| 302 |
+
#### Grab a <b>write</b> token [here](https://huggingface.co/settings/tokens), enter it below ↓'''
|
| 303 |
+
|
| 304 |
def start_training_og(
|
| 305 |
lora_name,
|
| 306 |
training_option,
|
|
|
|
| 452 |
def check_token(token):
|
| 453 |
try:
|
| 454 |
api = HfApi(token=token)
|
| 455 |
+
user_data = api.whoami()
|
| 456 |
except Exception as e:
|
| 457 |
+
raise gr.Warning("Invalid user token. Make sure to get your Hugging Face token from the settings page")
|
| 458 |
else:
|
| 459 |
+
if (user_data['auth']['accessToken']['role'] != "write"):
|
|
|
|
| 460 |
gr.Warning("Oops, you've uploaded a `Read` token. You need to use a Write token!")
|
| 461 |
else:
|
| 462 |
if user_data['canPay']:
|
| 463 |
return gr.update(visible=False), gr.update(visible=True)
|
| 464 |
else:
|
| 465 |
+
gr.Warning("Your payment methods aren't set up. You gotta set them up to start training")
|
| 466 |
return gr.update(visible=True), gr.update(visible=False)
|
| 467 |
|
| 468 |
return gr.update(visible=False), gr.update(visible=False)
|
| 469 |
|
| 470 |
+
css = '''.gr-group{background-color: transparent}
|
| 471 |
+
.gr-group .hide-container{padding: 1em; background: var(--block-background-fill) !important}
|
| 472 |
+
.gr-group img{object-fit: cover}
|
| 473 |
+
#main_title{text-align:center}
|
| 474 |
+
#main_title h1 {font-size: 2.25rem}
|
| 475 |
+
#main_title h3, #main_title p{margin-top: 0;font-size: 1.25em}
|
| 476 |
+
#training_cost h2{margin-top: 10px;padding: 0.5em;border: 1px solid var(--block-border-color);font-size: 1.25em}
|
| 477 |
+
#training_cost h4{margin-top: 1.25em;margin-bottom: 0}
|
| 478 |
+
#training_cost small{font-weight: normal}
|
| 479 |
+
|
| 480 |
+
'''
|
| 481 |
+
theme = gr.themes.Monochrome(
|
| 482 |
+
text_size="lg",
|
| 483 |
+
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
| 484 |
+
)
|
| 485 |
+
with gr.Blocks(css=css, theme=theme) as demo:
|
| 486 |
dataset_folder = gr.State()
|
| 487 |
+
gr.Markdown('''# Dreambooth Ease 🧞♂️
|
| 488 |
+
### Train a high quality Dreambooth SDXL LoRA in a breeze ༄, using state-of-the-art techniques
|
| 489 |
+
<small>[blog about the training script](#), [Colab Pro](#), [run locally or in a cloud](#)</small>''', elem_id="main_title")
|
| 490 |
lora_name = gr.Textbox(label="The name of your LoRA", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
|
| 491 |
training_option = gr.Radio(
|
| 492 |
label="What are you training?", choices=["object", "style", "face", "custom"]
|
|
|
|
| 523 |
with locals()[f"captioning_row_{i}"]:
|
| 524 |
locals()[f"image_{i}"] = gr.Image(
|
| 525 |
width=64,
|
| 526 |
+
height=111,
|
| 527 |
min_width=64,
|
| 528 |
interactive=False,
|
| 529 |
scale=1,
|
|
|
|
| 571 |
step=0.0000001,
|
| 572 |
value=1.0, # For prodigy you start high and it will optimize down
|
| 573 |
)
|
|
|
|
| 574 |
max_train_steps = gr.Number(
|
| 575 |
label="Max train steps", minimum=1, maximum=50000, value=1000
|
| 576 |
)
|
|
|
|
| 615 |
train_text_encoder_ti = gr.Checkbox(
|
| 616 |
label="Do textual inversion",
|
| 617 |
value=True,
|
| 618 |
+
info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly. If untoggled, you can remove the special TOK token from the prompts.",
|
| 619 |
)
|
| 620 |
with gr.Group(visible=True) as pivotal_tuning_params:
|
| 621 |
train_text_encoder_ti_frac = gr.Number(
|
|
|
|
| 659 |
with gr.Accordion(open=False, label="Even more advanced options"):
|
| 660 |
with gr.Row():
|
| 661 |
with gr.Column():
|
| 662 |
+
gradient_accumulation_steps = gr.Number(
|
| 663 |
+
info="If you change this setting, the pricing calculation will be wrong",
|
| 664 |
+
label="gradient_accumulation_steps",
|
| 665 |
+
value=1
|
| 666 |
+
)
|
| 667 |
+
train_batch_size = gr.Number(
|
| 668 |
+
info="If you change this setting, the pricing calculation will be wrong",
|
| 669 |
+
label="Train batch size",
|
| 670 |
+
value=2
|
| 671 |
+
)
|
| 672 |
+
num_train_epochs = gr.Number(
|
| 673 |
+
info="If you change this setting, the pricing calculation will be wrong",
|
| 674 |
+
label="num_train_epochs",
|
| 675 |
+
value=1
|
| 676 |
+
)
|
| 677 |
checkpointing_steps = gr.Number(
|
| 678 |
+
info="How many steps to save intermediate checkpoints",
|
| 679 |
+
label="checkpointing_steps",
|
| 680 |
+
value=5000
|
| 681 |
)
|
| 682 |
+
prior_loss_weight = gr.Number(
|
| 683 |
+
label="prior_loss_weight",
|
| 684 |
+
value=1
|
| 685 |
)
|
| 686 |
gradient_checkpointing = gr.Checkbox(
|
| 687 |
label="gradient_checkpointing",
|
| 688 |
info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass",
|
| 689 |
value=True,
|
| 690 |
)
|
|
|
|
|
|
|
|
|
|
| 691 |
adam_beta1 = gr.Number(
|
| 692 |
+
label="adam_beta1",
|
| 693 |
+
value=0.9,
|
| 694 |
+
minimum=0,
|
| 695 |
+
maximum=1,
|
| 696 |
+
step=0.01
|
| 697 |
)
|
| 698 |
adam_beta2 = gr.Number(
|
| 699 |
+
label="adam_beta2",
|
| 700 |
+
minimum=0,
|
| 701 |
+
maximum=1,
|
| 702 |
+
step=0.01,
|
| 703 |
+
value=0.99
|
| 704 |
)
|
| 705 |
prodigy_beta3 = gr.Number(
|
| 706 |
label="Prodigy Beta 3",
|
|
|
|
| 732 |
maximum=1,
|
| 733 |
)
|
| 734 |
prodigy_use_bias_correction = gr.Checkbox(
|
| 735 |
+
label="Prodigy Use Bias Correction",
|
| 736 |
+
value=True
|
| 737 |
)
|
| 738 |
prodigy_safeguard_warmup = gr.Checkbox(
|
| 739 |
+
label="Prodigy Safeguard Warmup",
|
| 740 |
+
value=True
|
| 741 |
)
|
| 742 |
max_grad_norm = gr.Number(
|
| 743 |
label="Max Grad Norm",
|
|
|
|
| 746 |
maximum=10,
|
| 747 |
step=0.1,
|
| 748 |
)
|
| 749 |
+
enable_xformers_memory_efficient_attention = gr.Checkbox(
|
| 750 |
+
label="enable_xformers_memory_efficient_attention"
|
| 751 |
+
)
|
| 752 |
with gr.Column():
|
| 753 |
scale_lr = gr.Checkbox(
|
| 754 |
label="Scale learning rate",
|
| 755 |
info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size",
|
| 756 |
)
|
| 757 |
+
lr_num_cycles = gr.Number(
|
| 758 |
+
label="lr_num_cycles",
|
| 759 |
+
value=1
|
| 760 |
+
)
|
| 761 |
lr_scheduler = gr.Dropdown(
|
| 762 |
label="lr_scheduler",
|
| 763 |
choices=[
|
|
|
|
| 771 |
value="constant",
|
| 772 |
)
|
| 773 |
lr_power = gr.Number(
|
| 774 |
+
label="lr_power",
|
| 775 |
+
value=1.0,
|
| 776 |
+
minimum=0.1,
|
| 777 |
+
maximum=10
|
| 778 |
+
)
|
| 779 |
+
lr_warmup_steps = gr.Number(
|
| 780 |
+
label="lr_warmup_steps",
|
| 781 |
+
value=0
|
| 782 |
)
|
|
|
|
| 783 |
dataloader_num_workers = gr.Number(
|
| 784 |
label="Dataloader num workers", value=0, minimum=0, maximum=64
|
| 785 |
)
|
| 786 |
+
local_rank = gr.Number(
|
| 787 |
+
label="local_rank",
|
| 788 |
+
value=-1
|
| 789 |
+
)
|
| 790 |
+
with gr.Column(visible=False) as cost_estimation:
|
| 791 |
+
with gr.Group(elem_id="cost_box"):
|
| 792 |
+
training_cost_estimate = gr.Markdown(elem_id="training_cost")
|
| 793 |
+
token = gr.Textbox(label="Your Hugging Face write token", info="A Hugging Face write token you can obtain on the settings page", type="password", placeholder="hf_OhHiThIsIsNoTaReALToKeNGOoDTry")
|
| 794 |
with gr.Group(visible=False) as no_payment_method:
|
| 795 |
with gr.Row():
|
| 796 |
+
gr.Markdown("## Your Hugging Face account doesn't have a payment method. Set it up [here](https://huggingface.co/settings/billing/payment) to train your LoRA")
|
| 797 |
payment_setup = gr.Button("I have set up my payment method")
|
| 798 |
+
start = gr.Button("Start training", visible=False, interactive=True)
|
| 799 |
+
progress_area = gr.Markdown("")
|
| 800 |
output_components.insert(1, advanced)
|
| 801 |
output_components.insert(1, cost_estimation)
|
| 802 |
|
|
|
|
| 807 |
],
|
| 808 |
fn=check_token,
|
| 809 |
inputs=token,
|
| 810 |
+
outputs=[no_payment_method, start],
|
| 811 |
+
queue=False
|
| 812 |
)
|
| 813 |
use_snr_gamma.change(
|
| 814 |
lambda x: gr.update(visible=x),
|
| 815 |
inputs=use_snr_gamma,
|
| 816 |
outputs=snr_gamma,
|
| 817 |
+
queue=False
|
| 818 |
)
|
| 819 |
with_prior_preservation.change(
|
| 820 |
lambda x: gr.update(visible=x),
|
|
|
|
| 846 |
queue=False
|
| 847 |
)
|
| 848 |
images.upload(
|
| 849 |
+
load_captioning,
|
| 850 |
+
inputs=[images, concept_sentence],
|
| 851 |
+
outputs=output_components,
|
| 852 |
+
queue=False
|
| 853 |
).then(
|
| 854 |
change_defaults,
|
| 855 |
inputs=[training_option, images],
|
| 856 |
+
outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images],
|
| 857 |
+
queue=False
|
| 858 |
)
|
| 859 |
images.change(
|
| 860 |
check_removed_and_restart,
|
| 861 |
inputs=[images],
|
| 862 |
outputs=[captioning_area, advanced, cost_estimation],
|
| 863 |
+
queue=False
|
| 864 |
)
|
| 865 |
training_option.change(
|
| 866 |
make_options_visible,
|
| 867 |
inputs=training_option,
|
| 868 |
outputs=[concept_sentence, image_upload],
|
| 869 |
+
queue=False
|
| 870 |
+
)
|
| 871 |
+
max_train_steps.change(
|
| 872 |
+
calculate_price,
|
| 873 |
+
inputs=[max_train_steps],
|
| 874 |
+
outputs=[training_cost_estimate],
|
| 875 |
+
queue=False
|
| 876 |
)
|
| 877 |
start.click(
|
| 878 |
fn=create_dataset,
|
| 879 |
inputs=[images] + caption_list,
|
| 880 |
+
outputs=dataset_folder,
|
| 881 |
+
queue=False
|
| 882 |
).then(
|
| 883 |
fn=start_training,
|
| 884 |
inputs=[
|
|
|
|
| 932 |
dataset_folder,
|
| 933 |
token
|
| 934 |
],
|
| 935 |
+
outputs = progress_area,
|
| 936 |
+
queue=False
|
| 937 |
)
|
| 938 |
|
| 939 |
do_captioning.click(
|