Spaces:
Running
on
Zero
Running
on
Zero
import comfy.utils | |
import comfy_extras.nodes_post_processing | |
import torch | |
def reshape_latent_to(target_shape, latent): | |
if latent.shape[1:] != target_shape[1:]: | |
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center") | |
return comfy.utils.repeat_to_batch_size(latent, target_shape[0]) | |
class LatentAdd: | |
def INPUT_TYPES(s): | |
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced" | |
def op(self, samples1, samples2): | |
samples_out = samples1.copy() | |
s1 = samples1["samples"] | |
s2 = samples2["samples"] | |
s2 = reshape_latent_to(s1.shape, s2) | |
samples_out["samples"] = s1 + s2 | |
return (samples_out,) | |
class LatentSubtract: | |
def INPUT_TYPES(s): | |
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced" | |
def op(self, samples1, samples2): | |
samples_out = samples1.copy() | |
s1 = samples1["samples"] | |
s2 = samples2["samples"] | |
s2 = reshape_latent_to(s1.shape, s2) | |
samples_out["samples"] = s1 - s2 | |
return (samples_out,) | |
class LatentMultiply: | |
def INPUT_TYPES(s): | |
return {"required": { "samples": ("LATENT",), | |
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced" | |
def op(self, samples, multiplier): | |
samples_out = samples.copy() | |
s1 = samples["samples"] | |
samples_out["samples"] = s1 * multiplier | |
return (samples_out,) | |
class LatentInterpolate: | |
def INPUT_TYPES(s): | |
return {"required": { "samples1": ("LATENT",), | |
"samples2": ("LATENT",), | |
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced" | |
def op(self, samples1, samples2, ratio): | |
samples_out = samples1.copy() | |
s1 = samples1["samples"] | |
s2 = samples2["samples"] | |
s2 = reshape_latent_to(s1.shape, s2) | |
m1 = torch.linalg.vector_norm(s1, dim=(1)) | |
m2 = torch.linalg.vector_norm(s2, dim=(1)) | |
s1 = torch.nan_to_num(s1 / m1) | |
s2 = torch.nan_to_num(s2 / m2) | |
t = (s1 * ratio + s2 * (1.0 - ratio)) | |
mt = torch.linalg.vector_norm(t, dim=(1)) | |
st = torch.nan_to_num(t / mt) | |
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio)) | |
return (samples_out,) | |
class LatentBatch: | |
def INPUT_TYPES(s): | |
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "batch" | |
CATEGORY = "latent/batch" | |
def batch(self, samples1, samples2): | |
samples_out = samples1.copy() | |
s1 = samples1["samples"] | |
s2 = samples2["samples"] | |
if s1.shape[1:] != s2.shape[1:]: | |
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center") | |
s = torch.cat((s1, s2), dim=0) | |
samples_out["samples"] = s | |
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])]) | |
return (samples_out,) | |
class LatentBatchSeedBehavior: | |
def INPUT_TYPES(s): | |
return {"required": { "samples": ("LATENT",), | |
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced" | |
def op(self, samples, seed_behavior): | |
samples_out = samples.copy() | |
latent = samples["samples"] | |
if seed_behavior == "random": | |
if 'batch_index' in samples_out: | |
samples_out.pop('batch_index') | |
elif seed_behavior == "fixed": | |
batch_number = samples_out.get("batch_index", [0])[0] | |
samples_out["batch_index"] = [batch_number] * latent.shape[0] | |
return (samples_out,) | |
class LatentApplyOperation: | |
def INPUT_TYPES(s): | |
return {"required": { "samples": ("LATENT",), | |
"operation": ("LATENT_OPERATION",), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced/operations" | |
EXPERIMENTAL = True | |
def op(self, samples, operation): | |
samples_out = samples.copy() | |
s1 = samples["samples"] | |
samples_out["samples"] = operation(latent=s1) | |
return (samples_out,) | |
class LatentApplyOperationCFG: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"operation": ("LATENT_OPERATION",), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "latent/advanced/operations" | |
EXPERIMENTAL = True | |
def patch(self, model, operation): | |
m = model.clone() | |
def pre_cfg_function(args): | |
conds_out = args["conds_out"] | |
if len(conds_out) == 2: | |
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1] | |
else: | |
conds_out[0] = operation(latent=conds_out[0]) | |
return conds_out | |
m.set_model_sampler_pre_cfg_function(pre_cfg_function) | |
return (m, ) | |
class LatentOperationTonemapReinhard: | |
def INPUT_TYPES(s): | |
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("LATENT_OPERATION",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced/operations" | |
EXPERIMENTAL = True | |
def op(self, multiplier): | |
def tonemap_reinhard(latent, **kwargs): | |
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None] | |
normalized_latent = latent / latent_vector_magnitude | |
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True) | |
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True) | |
top = (std * 5 + mean) * multiplier | |
#reinhard | |
latent_vector_magnitude *= (1.0 / top) | |
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0) | |
new_magnitude *= top | |
return normalized_latent * new_magnitude | |
return (tonemap_reinhard,) | |
class LatentOperationSharpen: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"sharpen_radius": ("INT", { | |
"default": 9, | |
"min": 1, | |
"max": 31, | |
"step": 1 | |
}), | |
"sigma": ("FLOAT", { | |
"default": 1.0, | |
"min": 0.1, | |
"max": 10.0, | |
"step": 0.1 | |
}), | |
"alpha": ("FLOAT", { | |
"default": 0.1, | |
"min": 0.0, | |
"max": 5.0, | |
"step": 0.01 | |
}), | |
}} | |
RETURN_TYPES = ("LATENT_OPERATION",) | |
FUNCTION = "op" | |
CATEGORY = "latent/advanced/operations" | |
EXPERIMENTAL = True | |
def op(self, sharpen_radius, sigma, alpha): | |
def sharpen(latent, **kwargs): | |
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None] | |
normalized_latent = latent / luminance | |
channels = latent.shape[1] | |
kernel_size = sharpen_radius * 2 + 1 | |
kernel = comfy_extras.nodes_post_processing.gaussian_kernel(kernel_size, sigma, device=luminance.device) | |
center = kernel_size // 2 | |
kernel *= alpha * -10 | |
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 | |
padded_image = torch.nn.functional.pad(normalized_latent, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') | |
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] | |
return luminance * sharpened | |
return (sharpen,) | |
NODE_CLASS_MAPPINGS = { | |
"LatentAdd": LatentAdd, | |
"LatentSubtract": LatentSubtract, | |
"LatentMultiply": LatentMultiply, | |
"LatentInterpolate": LatentInterpolate, | |
"LatentBatch": LatentBatch, | |
"LatentBatchSeedBehavior": LatentBatchSeedBehavior, | |
"LatentApplyOperation": LatentApplyOperation, | |
"LatentApplyOperationCFG": LatentApplyOperationCFG, | |
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard, | |
"LatentOperationSharpen": LatentOperationSharpen, | |
} | |