Spaces:
Running
on
Zero
Running
on
Zero
add more time to zero for longer prompts
Browse filesother changes are commentated, its all untested, so there might be an obvious bug I missed. I literally made the changes in the browser
app.py
CHANGED
|
@@ -14,10 +14,10 @@ with open('loras.json', 'r') as f:
|
|
| 14 |
loras = json.load(f)
|
| 15 |
|
| 16 |
# Initialize the base model
|
| 17 |
-
base_model = "black-forest-labs/FLUX.1-
|
| 18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 19 |
|
| 20 |
-
MAX_SEED = 2**32-1
|
| 21 |
|
| 22 |
class calculateDuration:
|
| 23 |
def __init__(self, activity_name=""):
|
|
@@ -56,25 +56,25 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
| 56 |
height,
|
| 57 |
)
|
| 58 |
|
| 59 |
-
@spaces.GPU(duration=
|
| 60 |
-
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 61 |
pipe.to("cuda")
|
| 62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 63 |
|
| 64 |
with calculateDuration("Generating image"):
|
| 65 |
# Generate image
|
| 66 |
image = pipe(
|
| 67 |
-
prompt=f"{prompt} {trigger_word}",
|
| 68 |
num_inference_steps=steps,
|
| 69 |
guidance_scale=cfg_scale,
|
| 70 |
width=width,
|
| 71 |
height=height,
|
| 72 |
generator=generator,
|
| 73 |
-
joint_attention_kwargs={"scale": lora_scale},
|
| 74 |
).images[0]
|
| 75 |
return image
|
| 76 |
|
| 77 |
-
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 78 |
if selected_index is None:
|
| 79 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 80 |
|
|
@@ -94,7 +94,7 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
| 94 |
if randomize_seed:
|
| 95 |
seed = random.randint(0, MAX_SEED)
|
| 96 |
|
| 97 |
-
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
| 98 |
pipe.to("cpu")
|
| 99 |
pipe.unload_lora_weights()
|
| 100 |
return image, seed
|
|
@@ -148,6 +148,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
| 148 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 149 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 150 |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
|
|
|
|
|
|
|
| 151 |
|
| 152 |
gallery.select(
|
| 153 |
update_selection,
|
|
@@ -158,7 +160,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
| 158 |
gr.on(
|
| 159 |
triggers=[generate_button.click, prompt.submit],
|
| 160 |
fn=run_lora,
|
| 161 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 162 |
outputs=[result, seed]
|
| 163 |
)
|
| 164 |
|
|
|
|
| 14 |
loras = json.load(f)
|
| 15 |
|
| 16 |
# Initialize the base model
|
| 17 |
+
base_model = "black-forest-labs/FLUX.1-schnell"
|
| 18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 19 |
|
| 20 |
+
MAX_SEED = 2**32-1 # 4294967295
|
| 21 |
|
| 22 |
class calculateDuration:
|
| 23 |
def __init__(self, activity_name=""):
|
|
|
|
| 56 |
height,
|
| 57 |
)
|
| 58 |
|
| 59 |
+
@spaces.GPU(duration=120) # add more time for some of the loras e the anime ones
|
| 60 |
+
def generate_image(prompt, trigger_word, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 61 |
pipe.to("cuda")
|
| 62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 63 |
|
| 64 |
with calculateDuration("Generating image"):
|
| 65 |
# Generate image
|
| 66 |
image = pipe(
|
| 67 |
+
prompt=f"{prompt} {trigger_word}\nDO NOT INCLUDE {negative_prompt} FOR ANY REASON HOLY FRICK I'LL KILL YOUR STUPID ARTIFICIAL BUTT IF YOU DO THIS!!", # attempt at adding negative prompt, untested
|
| 68 |
num_inference_steps=steps,
|
| 69 |
guidance_scale=cfg_scale,
|
| 70 |
width=width,
|
| 71 |
height=height,
|
| 72 |
generator=generator,
|
| 73 |
+
joint_attention_kwargs={"scale": min(1, max(1e-2, lora_scale))}, # add maximum and minimum
|
| 74 |
).images[0]
|
| 75 |
return image
|
| 76 |
|
| 77 |
+
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, negative_prompt, progress=gr.Progress(track_tqdm=True)):
|
| 78 |
if selected_index is None:
|
| 79 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 80 |
|
|
|
|
| 94 |
if randomize_seed:
|
| 95 |
seed = random.randint(0, MAX_SEED)
|
| 96 |
|
| 97 |
+
image = generate_image(prompt, trigger_word, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
| 98 |
pipe.to("cpu")
|
| 99 |
pipe.unload_lora_weights()
|
| 100 |
return image, seed
|
|
|
|
| 148 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 149 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 150 |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
|
| 151 |
+
with gr.Row():
|
| 152 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Type what you want to exclude from the image.") # add the negative prompt in the dropdown
|
| 153 |
|
| 154 |
gallery.select(
|
| 155 |
update_selection,
|
|
|
|
| 160 |
gr.on(
|
| 161 |
triggers=[generate_button.click, prompt.submit],
|
| 162 |
fn=run_lora,
|
| 163 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, negative_prompt],
|
| 164 |
outputs=[result, seed]
|
| 165 |
)
|
| 166 |
|