Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
| from huggingface_hub import hf_hub_download | |
| import lora | |
| from time import sleep | |
| import copy | |
| import json | |
| with open("sdxl_loras.json", "r") as file: | |
| sdxl_loras = [ | |
| ( | |
| item["image"], | |
| item["title"], | |
| item["repo"], | |
| item["trigger_word"], | |
| item["weights"], | |
| item["is_compatible"], | |
| ) | |
| for item in json.load(file) | |
| ] | |
| saved_names = [ | |
| hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras | |
| ] | |
| device = "cuda" #replace this to `mps` if on a MacOS Silicon | |
| def update_selection(selected_state: gr.SelectData): | |
| lora_repo = sdxl_loras[selected_state.index][2] | |
| instance_prompt = sdxl_loras[selected_state.index][3] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" | |
| return updated_text, instance_prompt, selected_state | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ) | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ).to("cpu") | |
| original_pipe = copy.deepcopy(pipe) | |
| pipe.to(device) | |
| last_lora = "" | |
| last_merged = False | |
| def run_lora(prompt, negative, weight, selected_state): | |
| global last_lora, last_merged, pipe | |
| if not selected_state: | |
| raise gr.Error("You must select a LoRA") | |
| repo_name = sdxl_loras[selected_state.index][2] | |
| weight_name = sdxl_loras[selected_state.index][4] | |
| full_path_lora = saved_names[selected_state.index] | |
| cross_attention_kwargs = None | |
| if last_lora != repo_name: | |
| if last_merged: | |
| pipe = copy.deepcopy(original_pipe) | |
| pipe.to(device) | |
| else: | |
| pipe.unload_lora_weights() | |
| is_compatible = sdxl_loras[selected_state.index][5] | |
| if is_compatible: | |
| pipe.load_lora_weights(full_path_lora) | |
| cross_attention_kwargs = {"scale": weight} | |
| else: | |
| for weights_file in [full_path_lora]: | |
| if ";" in weights_file: | |
| weights_file, multiplier = weights_file.split(";") | |
| multiplier = float(weight) | |
| else: | |
| multiplier = 1.0 | |
| multiplier = torch.tensor([multiplier], dtype=torch.float16, device=device) | |
| lora_model, weights_sd = lora.create_network_from_weights( | |
| multiplier, | |
| full_path_lora, | |
| pipe.vae, | |
| pipe.text_encoder, | |
| pipe.unet, | |
| for_inference=True, | |
| ) | |
| lora_model = lora_model.to("cuda").to(dtype=torch.float16) | |
| lora_model.apply_to(pipe.text_encoder, pipe.unet) #is apply too all you need? | |
| lora_model = lora_model.to("cuda").to(dtype=torch.float16) | |
| last_merged = True | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative, | |
| num_inference_steps=20, | |
| guidance_scale=7.5, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).images[0] | |
| last_lora = repo_name | |
| return image | |
| css = """ | |
| #title{text-align: center;margin-bottom: 0.5em} | |
| #title h1{font-size: 3em} | |
| #prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
| #run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; | |
| border-top-left-radius: 0px;} | |
| #gallery{display:flex} | |
| #gallery .grid-wrap{min-height: 100%;} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| title = gr.Markdown("# LoRA the Explorer 🔎", elem_id="title") | |
| with gr.Row(): | |
| gallery = gr.Gallery( | |
| value=[(a, b) for a, b, _, _, _, _ in sdxl_loras], | |
| label="SDXL LoRA Gallery", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| ) | |
| with gr.Column(): | |
| prompt_title = gr.Markdown( | |
| value="### Click on a LoRA in the gallery to select it", visible=True | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", elem_id="prompt") | |
| button = gr.Button("Run", elem_id="run_button") | |
| result = gr.Image(interactive=False, label="result") | |
| with gr.Accordion("Advanced options", open=False): | |
| negative = gr.Textbox(label="Negative Prompt") | |
| weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight") | |
| with gr.Column(): | |
| gr.Markdown("Use it with:") | |
| with gr.Row(): | |
| with gr.Accordion("🧨 diffusers", open=False): | |
| gr.Markdown("") | |
| with gr.Accordion("ComfyUI", open=False): | |
| gr.Markdown("") | |
| with gr.Accordion("Invoke AI", open=False): | |
| gr.Markdown("") | |
| with gr.Accordion("SD.Next (AUTO1111 fork)", open=False): | |
| gr.Markdown("") | |
| selected_state = gr.State() | |
| gallery.select( | |
| update_selection, | |
| outputs=[prompt_title, prompt, selected_state], | |
| queue=False, | |
| show_progress=False, | |
| ) | |
| prompt.submit( | |
| fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result | |
| ) | |
| button.click( | |
| fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result | |
| ) | |
| demo.launch() | |